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A DIRECT TRIGONOMETRIC PROOF OF MORLEY’S

THEOREM

TRAN QUANG HUNG

Abstract. We establish a direct short proof of Morley’s theorem using
trigonometry.

1. Introduction

Morley’s theorem is one of the most beautiful theorems of plane geometry.
We had seen a lot of proofs of Morley’s theorem [1, 2, 3], some of these proofs
used trigonometry. In this paper, we also use trigonometry to give a direct
short proof for this theorem.

Theorem (Morley’s theorem). In a triangle, the intersection points of the
adjacent trisectors of angles make an equilateral triangle.

2. Main proof

Given triangle ABC with ∠A = 3α, ∠B = 3β, and ∠C = 3γ then

(1) α+ β + γ = 60◦.

Denote the intersection points of the adjacent trisectors of angles by X,
Y , and Z. We shall prove that the first Morley triangle XY Z is equilateral.
See Figure 1.

It is sufficient to prove only that XY = XZ or since X is the incenter
of triangle PBC, it is sufficient to prove that PY = PZ where P is the
intersection of line BZ and CY .

Let denote by ∠PAY = x and ∠PAZ = y. Applying the law of sin for
triangles PAY and PAZ, we obtain

PY

PA
=

sinx

sin(α+ γ)
,
PZ

PA
=

sin y

sin(α+ β)
.
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Figure 1. Proof of Morley’s theorem

So the proof will be completed if we prove that

(2)
sinx

sin y
=

sin(α+ γ)

sin(α+ β)
.

Applying the trigonometric form of Ceva’s theorem [4] for triangle ABC
and P , we obtain

sin∠PAC
sin∠PAB

=
sin∠PBC
sin∠PBA

· sin∠PCA
sin∠PCB

,

or

sin(x+ α)

sin(y + α)
=

sin 2β

sinβ
· sin γ

sin 2γ
=

cosβ

cos γ
=
m

n
,

which means that

2m · cosα− n

2n · cosα−m
=

2 sin(x+ α) cosα− sin(y + α)

2 sin(y + α) cosα− sin(x+ α)

=
sin(x+ 2α) + sinx− sin(y + α)

sin(y + 2α) + sin y − sin(x+ α)

=
sinx+ 2 sin

(x−y−α
2

)
cos

(
x+y+3α

2

)
sin y + 2 sin

(y−x−α
2

)
cos

(
y+x+3α

2

)
=

sinx+ 2 cos 2α sinx

sin y + 2 cos 2α sin y

=
sinx

sin y
.(3)
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On the other hand, since from (1), we get 2 cos(α+ β + γ) = 1, therefore

2m · cosα− n

2n · cosα−m
=

2 cosβ cosα− cos γ

2 cos γ cosα− cosβ

=
2 cosβ cosα− 2 cos(α+ β + γ) cos γ

2 cos γ cosα− 2 cos(α+ β + γ) cosβ

=
cos(β − α) + cos(β + α) − cos(α+ β) − cos(α+ β + 2γ)

cos(γ − α) + cos(γ + α) − cos(α+ γ) − cos(α+ 2β + γ)

=
sin α+β+2γ+β−α

2 · sin α+β+2γ−β+α
2

sin α+2β+γ+γ−α
2 · sin α+2β+γ−γ+α

2

=
sin(α+ γ)

sin(α+ β)
.(4)

Thus from (3) and (4), we conclude (2) and that ends the proof.
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