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A Note About Isometry Groups of Chamfered Dodecahedron

and Chamfered Icosahedron Spaces

Ozcan Gelisgen and Serhat Yavuz

Abstract. Polyhedrons have been studied by mathematicians and ge-
ometers during many years, because of their symmetries. The theory of
convex sets is a vibrant and classical field of modern mathematics with
rich applications. The more geometric aspects of convex sets are developed
introducing some notions, but primarily polyhedra. A polyhedra, when
it is convex, is an extremely important special solid in R”. Some exam-
ples of convex subsets of Euclidean 3-dimensional space are Platonic Solids,
Archimedean Solids and Archimedean Duals or Catalan Solids. There are
some relations between metrics and polyhedra. For example, it has been
shown that cube, octahedron, deltoidal icositetrahedron are maximum, taxi-
cab, Chinese Checker’s unit sphere, respectively. In this study, we introduce
two new metrics, and show that the spheres of the 3-dimensional analytical
space furnished by these metrics are chamfered dodecahedron and chamfered
icosahedron. Also we give some properties about these metrics. We show
that the group of isometries of the 3-dimesional space covered by C' D—metric
and CI—metric are the semi-direct product of I;, and T'(3), where icosahe-
dral group Ij is the (Euclidean) symmetry group of the icosahedron and
T'(3) is the group of all translations of the 3-dimensional space.

1. INTRODUCTION

A polyhedron is a solid in three dimensions with flat faces (two-dimensional),
straight edges(one -dimensions) and vertices (zero-dimensional). The word
polyhedron comes from the Classical Greek poly for “many” and hedron
meaning “base”. Polyhedra, like polygons, may be convex or non-convex.
Polyhedra have very interesting symmetries. Therefore they have attracted
the attention of scientists and artists from past to present. Thus mathemati-
cians, geometers, physicists, chemists, artists have studied and continue to
study on polyhedra. Consequently, polyhedra take place in many studies
with respect to different fields.
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A polyhedron is a three-dimensional figure made up of polygons. When
discussing polyhedra one will use the terms faces, edges and vertices. Each
polygonal part of the polyhedron is called a face. A line segment along which
two faces come together is called an edge. A point where several edges and
faces come together is called a vertex. That is, a polyhedron is a solid in
three dimensions with flat faces, straight edges and vertices. In the early
days of the study, the polyhedra involved to only convex polyhedra. If the
line segment joining any two points in the set is also in the set, the set is
called a convex set. There are many thinkers that have worked on convex
polyhedra since the ancient Greeks. The Greek scientist defined two classes
of convex equilateral polyhedron with polyhedral symmetry, the Platonic
and the Archimedean. Johannes Kepler found a third class, the rhombic
polyhedra and Eugene Catalan discovered a fourth class. The Archimedean
solids and their duals the Catalan solids are less well known than the Platonic
solids. Whereas the Platonic solids are composed of one shape, these forms
that Archimedes wrote about are made of at least two different shapes, all
forming identical vertices. They are thirteen polyhedra in this type. Since
each solid has a dual there are also thirteen Catalan solids which is named
after Belgian mathematician Eugene Catalan in 1865, these are made by
placing a point in the middle of the faces of the Archimedean Solids and
joining the points together with straight lines. The Catalan solids are all
convex.

As it is stated in [17], Minkowski geometry is a non-Euclidean geometry
in a finite number of dimensions. Here the linear structure is the same as
the Euclidean one but distance is not uniform in all directions. Instead of
the usual sphere in Euclidean space, the unit ball is a general symmetric
convex set. The points, lines and planes are the same, and the angles are
measured in the same way, but the distance function is different. Some
mathematicians studied and improved metric geometry in plane and space.
(Some of these are [1, 2, 4, 6, 8, 9, 10, 11, 12, 13, 14] ) According to studies
on polyhedra, there are some Minkowski geometries in which unit spheres
of these spaces furnished by some metrics are associated with convex solids.
For example, unit spheres of maximum space and taxicab space are cubes
and octahedrons, respectively, which are Platonic Solids. And unit sphere of
CC-space is a deltoidal icositetrahedron which is a Catalan solid. Therefore,
there are some metrics in which unit spheres of space furnished by them
are convex polyhedra. That is, convex polyhedra are associated with some
metrics. When a metric is given we can find its unit sphere. Naturally
a question can be asked; ”Is it possible to find the metric when a convex
polyhedron is given?”.

In this study, two new metrics are introduced, and showed that the spheres
of the 3-dimensional analytical space furnished by these metrics are cham-
fered dodecahdron and chamfered icosahedron. Also some properties about
these metrics are given. Morever, we show that the group of isometries
of the 3-dimesional space covered by C'D—metric and CI—metric are the
semi-direct product of Ij, and T'(3), where icosahedral group I}, are the (Eu-
clidean) symmetry group of the icosahedron and 7'(3) is the group of all
translations of the 3-dimensional space.
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2. CHAMFERED DODECAHEDRON METRIC AND SOME PROPERTIES

It has been stated in [16], there are many variations on the theme of
the regular polyhedra. Firstly, one can meet the eleven solids which can be
made by cutting off (truncating) the corners, and in some cases the edges, of
the regular polyhedra so that all the faces of the faceted polyhedra obtained
in this way are regular polygons. These polyhedra were first discovered
by Archimedes (287-212 B.C.E.) and so they are often called Archimedean
solids. Notice that vertices of the Archimedean polyhedra are all alike, but
their faces, which are regular polygons, are of two or more different kinds.
For this reason they are often called semiregular. Archimedes also showed
that in addition to the eleven obtained by truncation, there are two more
semiregular polyhedra: the snub cube and the snub dodecahedron.

The other operation about consctructing polyhedron from any polyhedra
is chamfering. In geometry, chamfering or edge-truncation is a topological
operator that modifies one polyhedron into another. It is similar to ex-
pansion, moving faces apart and outward, but also maintains the original
vertices. For polyhedra, this operation adds a new hexagonal face in place
of each original edge.

One of the solids which is obtained by chamfering from another solid
is the chamfered dodecahedron. It has 12 regular pentagonal faces, 30 bi-
mirror-symmetric hexagonal faces, 80 vertices and 120 edges. The chamfered
dodecahedron can be obtained by chamfering operation from dodecahedron.
This is the shape of the fullerene Cgp; sometimes this shape is denoted
Cso(In) to describe its icosahedral symmetry and distinguish it from other
less-symmetric 80-vertex fullerenes. It is one of only four fullerenes found by
Deza, Deza and Grishukhin (1998) to have a skeleton that can be isometri-
cally embeddable into an L1 space, and also it is the Goldberg polyhedron
Gv(2,0), containing pentagonal and hexagonal faces [19]. Figure 1 shows
the chamfered dodecahdron and the Cgqy fullerene.

Figure 1: Chamfered Dodecahedron, Cgy fullerene

Before we give a description of the chamfered dodecahedron distance
function, we must agree on some impressions. Therefore U denote the
maximum of quantities {|x1 — z2|, |y1 — y2|, |21 — 22|} for P = (21,91, 21),
Py = (x2,y92,22) € R3. Also, X —Y — Z — X orientationand Z —-Y — X — Z
orientation are called positive (+) direction and negative (—) directions,
respectively. Accordingly, U and U~ will display the next term in the
respective direction according to U. For example, if U = |y; — yal, then



36 Ozcan Gelisgen and Serhat Yavuz

Ut = |21 — 2] and U~ = |x1 —x3|. The metric that unit sphere is chamfered
dodecahedron is described as following;:

Definition 2.1. Let P = (x1,y1,21) and Py = (z2,y2, 22) be two points in
R3. The distance function dop : R? x R — [0,00) chamfered dodecahedron
distance between Py and Py is defined by

1 1
dep(Py, Py) = max {U,BU +aUT, gU +5U+ 2¢U+} :

where @ = @ golden ratio, o =

13v5-5 | (7v/5-9)1/25+10v5
82

305 and B = ap.

According to chamfered dodecahedron distance, there are three different
paths from P; to P». These paths are

i) a line segment which is parallel to a coordinate axis,

i1) union of two line segments which one is parallel to a coordinate axis
and other line segment makes arctan (%) angle with another coordinate axis,

i71) union of three line segments one of which is parallel to a coordinate

5‘/279) and arctan ()

axis and the others line segments makes one of arctan(
angles with one of the other coordinate axes .

Thus chamfered dodecahedron distance between P, and P is for (i) Eu-
clidean lengths of line segmentfor (ii) 8 times the sum of Euclidean lengths of
mentioned two line segments, for (iii) ¢ times the sum of Euclidean lengths
of mentioned three line segments. In case of |y; —y2| > |x1 — z2| > |21 — 29|,
Figure 2 illustrates some of chamfered dodecahedron way from P; to Ps.

§ B:arctan(%)

1
a=arctan(£)

\8 /f;c u=arctan(5\z79)

Figure 2: Some C'D way from P; to P

In [5], the authour introduce a metric and show that spheres of 3-dimensional
analytical space furnished by this metric is the dodecahedron. This metric
for Py = (z1,y1,21), P2 = (22, Y2, 22)€ R3 are defined as follows:

dD(Pl,PQ) =U+ (QD — 1) UT.

Lemma 2.1. Let P, = (z1,y1, 21) and Py = (29, Y2, 22) be distinct two points
inR3. Uya denote the mazimum of quantities of {|x1 — xa|, |y1 — ya|, |21 — 22|}

Then
dep(Pr, Py) > Ui

dep(P1, P2) > BUs + U5,
dep(Pi, Po) > §Us + 5U, + 55Ut
Proof. Proof is trivial by the definition of mazimum function.

Theorem 2.1. The distance function dop is a metric. Also according to
dcp, the unit sphere is a chamfered dodecahedron in R3.

Proof. Let dop : R® x R3 — [0,00) be the chamfered dodecahedron
distance function and Py=(z1,y1,21) , Po=(x2,y2,22) and Ps=(z3,ys, 23)
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are distinct three points in R3. Ujs denote the maximum of quantities of
{|lz1 — 22|, |y1 — y2|, |21 — 22|}. To show that dcp is a metric in R3, the
following axioms hold true for all P;, P, and P3 € R3.

M].) dCD(Pl,PQ) Z 0 and dCD(Pl,PQ) =0 iff P1 = P2

M2) dop(Pr, P2) = dep(Pa, Pr)

M3) dop(Pr, P3) < dep(P1, P2) + dop(Pe, P3).

Since absolute values is always nonnegative value dop (P, P2) > 0 . If
dop(Pr, Py) = 0 then dep (Py, Pa) = max {U, BU + aU*, U + LU~ + im} -
0, where U are the maximum of quantities {|z1 — x2l,|y1 — y2l, |21 — 22|}
Therefore, U=0, U + aUT=0, and $U + %U‘ + iU“‘ = 0. Hence, it is
clearly obtained by x1 = x2, y1 = y2, 21 = 29. That is, P, = P,. Thus it is
obtained that dop (P, P2) = 0 iff P, = Ps.

Since |x1 — 2| = |w2 — @1] , |y1 — ya|=|y2 — y1| and |21 — 22| = [22 — 2],
obviously dep(Py, P2) = doc (P2, P1). That is, dop is symmetric.

Ui, and Us3 denote the maximum of quantities of {|z1 — x3|, [y1 — y3|, |21 — 23|}
and {|xa — z3|,|y2 — y3|, |22 — 23|}, respectively.

dep(Pi, P3) = max {U13,5U13 + O%Ul—g, %Ulg + %Ul_?; + ﬁUl—E}
<max{ Urz + Uss, B (Ur2 + Usz) + o (U + Us) }
= £ (Ur2 + Uss) + 5 (Upy + Usy) + 55 (Ut + Usp)
=1I.

Therefore one can easily find that I < dep(Pyi, P2) + dep(Pe, P3) from
Lemma 2.1. So dop(Py1, Ps) < dop(Pi, P2) + dop (P2, P3). Consequently,
chamfered dodecahedron distance is a metric in 3-dimensional analytical
space.

Finally, the set of all points X = (z,y, z) € R? that chamfered dodecahedron
distance is 1 from O = (0,0,0) is

1 1
Scp = {(x,y,z) : max{U,ﬁU+aU+,(gU+2U_+2(pU+} = 1}.

Thus the graph of Sgp is as in the figure 3:

Figure 3 The unit sphere in terms of dop: Chamfered Dodecahedron

Corrolary 2.1. The equation of the chamfered cube with center (xo,yo, 20)
and radius r s

1 1
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which is a polyhedron which has 42 faces and 80 vertices, where Uy are the
mazimum of quantities {|x — xol,|y — yol, |z — 20|}. Coordinates of the ver-
tices are translation to (xo, Yo, z0) all circular shift of the three axis compo-
nents and all possible +/- sign changes of each axis component of (0, Car,r) ,
(Cir,Crryr), (Csr, Cor, Cer) , (0,Cyr,Csr) and (Csr,Csr,Csr), where Cy =
2\/5\/2§+10\/5_5+3\/57 O = 24+2/5— 2\/5\/2§+10ﬁ7 Oy = 3,37@7 Cy = @’

Cy = T _ 2\/5\/255+170\/57 Cy — (5—\@)V525+1W5 3, G = 5 4
(vV5-5)v/25+10v5 (5-VE)V25110V5 545

= , and Cr = = -2

Lemma 2.2. Let ! be the line through the points Py =(x1,y1,21) and Py=(x2, Y2, 22)
in the analytical 3-dimensional space and dg denote the Euclidean metric.
If | has direction vector (p,q,r), then

dep(P1, Pe) = (P P)dgp (P, Pr)
where
max {Ud,ﬁUd +aUf, $U, + 3U; + iUJ}
/pQ +¢2 + 12 ’

Uy are the maximum of quantities {|p|, |q|, |r|}.

WP P) =

Proof. Equation of [ gives us x1 — x2 = Ap, y1 — yo = Aq, 21 — 22 = Ar,
A € R. Thus,

1.1
dop(Pr, Py) = || (max{Ud,ﬁUd +aUJ, gUd +5Us + ij}) ,

where Uy are the maximum of quantities {|p|,|q|,|r|}, and dg(A,B) =
Al v/p? 4+ ¢ + r? which implies the required result.

The above lemma says that dop-distance along any line is some positive
constant multiple of Euclidean distance along same line. Thus, one can
immediately state the following corollaries:

Corrolary 2.2. If P, P, and X are any three collinear points in R3, then
dp(Py, X) =dg(P, X) if and only if dop(P1, X) = dop (P2, X) .

Corrolary 2.3. If P, P> and X are any three distinct collinear points in
the real 3-dimensional space, then

dep(X, P1) / dep(X, Po) =dg(X, P1) |/ dg(X, Ps) .

That is, the ratios of the Euclidean and dop—distances along a line are the
same.

3. CHAMFERED ICOSAHEDRON METRIC AND SOME PROPERTIES

The chamfered icosahedron can be obtained by using chamfering opera-
tion from icosahedron. The chamfered icosahedron has 20 equilateral tri-
angular faces, 30 bi-mirror-symmetric hexagonal faces, 72 vertices and 120
edges. Figure 4 shows the chamfered icosahedron.
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Figure 4: The chamfered icosahedron

The notations U, U™, U~ shall be used as defined in the previous section.
The metric that unit sphere is the chamfered icosahedron is described as
following:

Definition 3.1. Let P| = (z1,y1,21) and Py = (x2,y2, 22) be two points in
R3. The distance function dcy : R? x R3 — [0,00) chamfered icosahedron
distance between Py and P» is defined by

1 1
dor(Py, Py) = maX{U, wal + gU_,oz U+UT+U7), §U+ SUT+ wm} :

, _ 30742935 _ (540-208V5)/25+10v5
golden ratio and o = ==55°7 + 9410 .

where o = @

According to chamfered icosahedron distance, there are four different
paths from P; to P». These paths are

i) union of two line segments each of which is parallel to a coordinate
axis,

i1) union of two line segments which one is parallel to a coordinate axis

and other line segment makes arctan (?) angle with another coordinate

axis,

i41) union of three line segments each of which is parallel to a coordinate
axis,

iv) union of three line segments one of which is parallel to a coordinate
axis and the others line segments makes one of arctan(‘r"[%) and arctan (%)
angles with one of the other coordinate axes.

Thus chamfered icosahedron distance between P; and P» is for (i) Eu-
clidean lengths of line segment, for (ii) pa times the sum of Euclidean
lengths of mentioned two line segments, for (iii) « times the sum of Eu-
clidean lengths of mentioned three line segments, and for (iv) ¢ times the
sum of Euclidean lengths of mentioned three line segments. In case of
ly1 — ya| > |z1 — 22| > |21 — 22|, Figure 5 illustrates some of chamfered
dodecahedron way from P; to Ps.
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Ot=arct: [ﬁ)
=arctan( Bl B=5f=t=r‘(fi)

:
!
!
/’“-(" g mrmnls‘:"’)

...........................

Figure 5: CI way from P; to P

In [5], the authour introduce a metric and show that spheres of 3-dimensional
analytical space furnished by this metric is the icosahedron. This metric for
Py = (21,91,21), Py = (72,32, 22)€ R? are defined as follows:

d](Pl,PQ) = max{kg (U—i—k‘lU_) , ko (U+U_ +U+)}

3-v6  _Vh-l
9 T Ty

where k1 =

Lemma 3.1. Let Py = (x1,y1,21) and Py = (22, Y2, 22) be distinct two points
inR3. Uya denote the mazimum of quantities of {|x1 — xa|, |y1 — ya|, |21 — 22|}
Then

do1(Pr, P2) > Uia,

dor(Pr, P) = paliz + GUpy,
dC](Pl, PQ) >« (U12 -+ Uf% + U1_2) ,
dc[(Pl, P2) > %Ulg + %Uﬁ + iUE

Proof. Proof is trivial by the definition of maximum function.

Theorem 3.1. The distance function dcoy is a metric. Also according to
dcr, unit sphere is a chamfered icosahedron in R3.

Proof. One can easily show that the chamfered icosahedron distance func-
tion satisfies the metric axioms by similar way in Theorem 2.1.

Consequently, the set of all points X = (z,y,2) € R? that chamfered
icosahedron distance is 1 from O = (0,0,0) is

1 1
Spp = {(g;,y,z) : maX{U,can+ gU_,a U+Ur+U), §U+ SU+ 2<pU+} _ 1},
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where U are the maximum of quantities {|z|, |y|, |z|}. Thus the graph of S¢r
is as in the figure 6:

\

Figure 6 The unit sphere in terms of doo: Chamfered Icosahedron

Corrolary 3.1. The equation of the chamfered icosahedron with center
(20, Y0, 20) and radius r is

1 1
maX{U(%sOOéUO—i_ZU()_aa(UO+UJ_+UO_),§UO+2UO_ +2€0U5F} =T,

which is a polyhedron which has 50 faces and 72 vertices, where Uy are the
mazimum of quantities {|x — xol,|y — yol, |z — 20|}. Coordinates of the ver-
tices are translation to (xo, Yo, 20) all circular shift of the three axis compo-
nents and all possible +/- sign changes of each axis component of (Csr,0,71),

(r,Cer, Cor) , (0,Car, Csr) , and (Csr, Cr, Cyr), wheret = (11\/5_25)5\/m,

CO - 14_6\/5—'_%75’ Cl :4\/5_8+t5 CZ :9—4\/5—t, 03 = %7
Cy=6v5 13 - _t, 052%1\/5%—%757 (md06215—277\/5_t_

Lemma 3.2. Let be the line through the points Py =(x1,y1,21) and Po=(z2,y2, 22)
in the analytical 3-dimensional space and dg denote the Fuclidean metric.
If 1 has direction vector (p,q,r), then

dor(Pr, Py) = p(PiPo)dg (P, Pr)
where
max {Uy, paly + 2U7 & (Ug+ UF +U7), §Ua+ 305 + U7 }
/p2 +q2 +1r2 ’

Uy are the mazimum of quantities {|pl,|q|, 7|}

p(PrPy) =

Proof. Equation of [ gives us x1 — xo = Ap, y1 — yo = Aq, 21 — 22 = Ar,
A € R. Thus,

der(Pr, Py) =
Al (max {Us, pally + 2U7 @ (Ua + UF +U7)  §Ua+ 307 + U7 })

where Uy are the maximum of quantities {|pl|,|q|,|r|}, and

dp(A, B) = |M\ /p? + ¢% + r2 which implies the required result.

The above lemma says that dgj-distance along any line is some positive
constant multiple of Euclidean distance along same line. Thus, one can
immediately state the following corollaries:

Corrolary 3.2. If Pi, P, and X are any three collinear points in R3, then
dE(Pl,X) = dE<P2,X> if and only if dC[(Pl, X) = dC[(PQ,X) .
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Corrolary 3.3. If P, P> and X are any three distinct collinear points in
the real 3-dimensional space, then

dor(X, Py) [ dor(X, Py) =dg(X, P1) / dp(X, P,) .

That is, the ratios of the Fuclidean and dcoy—distances along a line are the
same.

4. ISOMETRY GROUP OF CHAMFERED DODECAHEDRON AND
CHAMFERED ICOSAHEDRON SPACES

Three essential methods geometric investigations; synthetic, metric and
group approach. The group approach takes isometry groups of a geome-
try and convex sets plays an substantial role in indication of the group of
isometries of geometries. Those properties are invariant under the group of
motions and geometry studies those properties. There are a lot of studies
about group of isometries of a space (See [9, 10, 6])

It is mentioned in introduction section that in a Minkowski geometry the
linear structure is the same as the Euclidean one but distance is not uniform
in all directions. Instead of the usual sphere in Euclidean space, the unit
ball is a certain symmetric closed convex set. In [15] the author give the
following thereom:

Theorem 4.1. If the unit ball C of (V,||||) does not intersect a two-plane in
an ellipse, then the group I (3)of isometries of (V,||||) is isomorphic to the
semi-direct product of the translation group T(3) of R® with a finite subgroup
of the group of linear transformations with determinant +1.

After this theorem remains a single question. This question is that what
is the relevant subgroup?

Now we show that the group of isometries of the 3-dimesional space cov-
ered by CD—metric and C'I—metric are the semi-direct product of I}, and
T'(3), where icosahedral group I, are the (Euclidean) symmetry group of the
icosahedron and T'(3) is the group of all translations of the 3-dimensional
space. In the rest of article we take A = CD or A = CI. That is,
A e {CD,CI}.

Definition 4.1. Let P, QQ be two points in R?’A. The minimum distance set
of P,Q is defined by

{X [ da(P, X) +dn(Q, X) = da(P,Q)}
and denoted by [PQ)].

In general, [PQ)] stand for a hexagonal dipyramid which is not necessary
uniform in R%C and R?éo as shown in Figure 7.

Figure 7

Proposition 4.1. Let ¢ : Ry — R3 be an isometry and let [PQ)| be the
minimum distance set of P, Q. Then ¢([PQ]) = [¢(P)o(Q)].
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Proof. Let Y € ¢([PQ]). Then,
Y es(PQ) & X €[PQ]5Y = o(X)
= dA(P, X) + dA(Q,X) = dA(P, Q)
& da(9(P), 9(X)) +da(4(Q), 6(X)) = da(6(P), #(Q))
= Y =9(X) € [o(P)o(Q)]-

Corrolary 4.1. Let ¢ : R?’A — R?’A be an isometry and [PQ)] be the minimum

distance set. Then ¢ maps vertices to vertices and preserves the lengths of
the edges of [PQ)].

Proposition 4.2. Let ¢ : R% — R3 ;. be an isometry such that ¢(O) = O.
Then ¢ € I,.
Proof. Since A € {CD,C1}, there are two possibility for A. Let A = CD,
Co = DOV _ 588V5 0y = 9495 2OVIHIOS ) _ 35 ¢y =
VE—1 ¢ — T43VE _ 2V5V25410v6 o (5-v5)V/25+10V5 L3 = TG

2 Y4 = 2 5 ) W5 — 5 y V6 — T g
(v5-3) 525“0\/5, Cr =1ve Cg = (5-v5) 525“0\/5 — 5+2‘/5, and let P =
(0,C2,C7) , b= (C1,Cs,C7) , P3=(C3, Cy, Cs) , Pa= (Co, Cs, C3) , Ps= (0, Cy, C5),
Ps = (C5,C5,C3) and R = (‘/52_1, 1, ‘/5;1) be seven points in R, ,. Con-
sider [OR] which is the hexagonal dipyramid (Figure 8(a)).

Figure 8(a) Figure 8(b)

Also points Py, Py, P3, Py, Ps, Pg lie on minimum distance set [OR] and unit
sphere with center at origin. Moreover these six points are the corner points
of a chamfered dodecahedron’s hexagonal face. ¢ maps points P; to the
vertices of a chamfered dodecahedron by Corollary 4.1. Since ¢ preserve
the lengths of the edges and chamfered dodecahedron have 30 hexagonal
faces, there are 30 possibility to points which they can map, and also there
are four possibility to points which they can map on the hexagonal face
of chamfered dodecahedron. Therefore total number of possibility are one
hundred and twenty. If these possibilities are handled one by one, it is seen
that the elements of the desired subgroup are obtained.

Let A=CT, ¢ = WEZIVIRIOS 1465114, €1 = 4V5—8+1,

Cho=9-4V5-1,Cy=1,Cy=6v/5-13-1t, C; = %1%75, Cs =1,
Cr = 1515 _and let P = (C3,0,Cs), P2 = (C, C3,0), Py = (Cg, Cr, Co),
Py = (C5,0,C4), Ps = (C5,C1,C4), Ps = (Cy,C5,C1)RE,;. Consider [OR]
such that R = (@, @, 1). that is the hexagonal dipyramid with di-
agonal OR. (Figure 8(b)) Also points P; lie on minimum distance set [OR)]
and unit sphere with center at origin. Moreover these six points are the
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corner points of a chamfered icosahedron’s hexagonal face. ¢ maps points
P; to the vertices of a chamfered icosahedron by Corollary 4.1. Since ¢ pre-
serve the lengths of the edges, and chamfered icosahedron have 30 hexagonal
faces, there are 30 possibility to points which they can map, and also there
are four possibility to points which they can map on the octagonal face of
chamfered icosahedron. Therefore total number of possibility are one hun-
dred and twenty. Similar way, If these possibilities are handled one by one,
it is seen that the elements of the desired subgroup are obtained.

Theorem 4.2. Let ¢ : Ry — R% be an isometry. Then there exists a
unique Ty € T(3) and ¥ € I, where ¢ =Ty 0

Proof. Let ¢(O) = A such that A = (a1, a2,a3). Define ¢ = T_ 4 0 ¢. We
know that ¢(O) = O and 1 is an isometry. Thereby, ¢ € I, and ¢ = T4 01
by Proposition 4.2. The proof of uniqueness is trivial.
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