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MORE CHARACTERIZATIONS OF

CYCLIC QUADRILATERALS

MARTIN JOSEFSSON

Abstract. We continue the project of collecting a large number of charac-
terizations of convex cyclic quadrilaterals with their proofs, which we started
in [18]. This time we prove 15 more, focusing primarily on characterizations
concerning trigonometry and the diagonals.

1. Introduction

In a convex quadrilateral ABCD, let the extensions of opposite sides AB
and CD intersect at E. Suppose the angle bisector to angle AED intersects
BC at G and AD at H in such a way that

(1) AH ·BG = CG ·DH.

What can we conclude about quadrilateral ABCD?

Figure 1. A quadrilateral in which AH ·BG = CG ·DH

Applying the angle bisector theorem in triangles ECB and EDA (see
Figure 1), we get

CE

BE
=

CG

BG
,

DE

AE
=

DH

AH
;
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whence

(2)
CE

BE
· DE

AE
=

CG

BG
· DH

AH
.

The right hand side is equal to 1 due to the assumption (1), implying that

AE ·BE = DE · CE.

We recognize this equality as the external case of the intersecting chords
theorem. According to its converse, it holds that ABCD must be a cyclic
quadrilateral. In fact we see in (2) that

AH ·BG = CG ·DH ⇔ AE ·BE = DE · CE,

and since the intersecting chords theorem is a characterization of cyclic
quadrilaterals (see Theorem A.5 in [18]), then so is equality (1). Thus we
have proved:

Theorem 1.1. If the extensions of opposite sides AB and CD intersect at E

in a convex quadrilateral ABCD, and the bisector to angle AED intersects

BC at G and AD at H, then

AH ·BG = CG ·DH

if and only if it is a cyclic quadrilateral.

In this paper we shall prove 14 more characterizations of cyclic quadrilat-
erals. Almost all of the theorems we prove are known necessary conditions
(properties) of cyclic quadrilaterals, but the fact that they are also sufficient
conditions can hardly be considered well-known for the majority of them.

2. Trigonometric characterizations

Let us denote α = ∠BAC, β = ∠ABD, γ = ∠ACD and δ = ∠BDC (see
Figure 2) in a quadrilateral ABCD. Then we have:

Figure 2. Angles between two opposite sides and the diagonals

Theorem 2.1. In a convex quadrilateral ABCD, the equality

sinα sin γ = sinβ sin δ

holds if and only if it is a cyclic quadrilateral.
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Proof. If the diagonals intersect at P , then applying the law of sines (see
Figure 2) yields

AP

sinβ
=

BP

sinα
,

CP

sin δ
=

DP

sin γ
.

Thus
AP

sinβ
· CP

sin δ
=

BP

sinα
· DP

sin γ
.

Hence we have that

AP · CP = BP ·DP ⇔ sinα sin γ = sinβ sin δ

and since the left hand equality (the internal case of the intersecting chords
theorem) is a characterization of cyclic quadrilaterals, then so is the right
hand equality. �

We also give another, direct proof of the converse. (The direct theorem
is trivial, since α = δ and β = γ in a cyclic quadrilateral.) Let θ = ∠BPC.
Then β = θ − α and γ = θ − δ (see Figure 2), so sinα sin γ = sinβ sin δ
implies

sinα sin (θ − δ) = sin (θ − α) sin δ.

Applying a subtraction formula, we get after simplification

sinα cos δ = cosα sin δ

which is equivalent to

sin (α− δ) = 0.

This equation only has one valid solution, α = δ in a convex quadrilateral,
proving that it is a cyclic quadrilateral (Theorem A.1 in [18]).

Next we have a trigonometric version of the famous supplementary angles
characterization ∠A+∠C = π = ∠B +∠D (Theorem A.3 in [18]). It is for
instance stated in [27] and will be used in two subsequent proofs.

Theorem 2.2. In a convex quadrilateral ABCD, the equalities

cosA+ cosC = cosB + cosD = 0

are true if and only if it is a cyclic quadrilateral.

Proof. (⇒) If the quadrilateral is cyclic, then ∠A+ ∠C = π. Hence

cosA+ cosC = cosA+ cos (π −A) = cosA− cosA = 0.

The second equality is proved in the same way.
(⇐) We use the method of the contrapositive statement to prove the con-

verse. Assume the quadrilateral is not cyclic and without loss of generality
that ∠A > π−∠C. Since 0 < ∠A < π and the cosine function is decreasing
on that interval, we get cosA < cos (π − C). Hence

cosA+ cosC < cos (π − C) + cosC = 0.

In the same way

∠A > π − ∠C ⇒ ∠B < π − ∠D ⇒ cosB + cosD > 0.

Thus, if the quadrilateral is not cyclic, then cosA + cosC 6= cosB + cosD
and neither side is equal to zero. �
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A direct proof of the converse can be based on the trigonometric formula

cosA+ cosC = 2 cos
A+ C

2
cos

A− C

2
.

We leave the details to be carried out by the reader.
The following characterization was proved in the same way in [9, p. 104]

(but with vertex angles 2A, 2B, 2C and 2D).

Theorem 2.3. In a convex quadrilateral ABCD, the equalities

tan
A

2
tan

C

2
= tan

B

2
tan

D

2
= 1

are true if and only if it is a cyclic quadrilateral.

Proof. (⇒) In a cyclic quadrilateral, ∠A + ∠C = ∠B + ∠D = π. Using
these, the equalities in the theorem directly follow since tan C

2 = cot A
2 and

tan D
2 = cot B

2 .
(⇐) Assume the quadrilateral is not cyclic and without loss of generality

that ∠A + ∠C > π and ∠B + ∠D < π. From the addition formula for
tangent, we get

0 > tan

(

A

2
+

C

2

)

=
tan A

2 + tan C
2

1− tan A
2 tan C

2

.

The angles A
2 and C

2 are acute, so the numerator is positive. Then the

denominator must be negative, so tan A
2 tan C

2 > 1. In the same way

tan B
2 tan D

2 < 1. Hence

tan
A

2
tan

C

2
6= tan

B

2
tan

D

2
and neither side is equal to 1. �

The half angle formulas for cosine are also trigonometric characterizations
of cyclic quadrilaterals. We use the notations a = AB, b = BC, c = CD

and d = DA for the lengths of the sides of quadrilateral ABCD, and

s = 1
2(a+ b+ c+ d)

for the semiperimeter. The inequalities derived in the second half of the
proof will be used in the proof of another converse later on.

Theorem 2.4. In a convex quadrilateral with consecutive sides a, b, c and

d, the half angle formulas for cosine are given by

cos
A

2
=

√

(s− b)(s− c)

ad+ bc
,

cos
B

2
=

√

(s− c)(s− d)

ab+ cd
,

cos
C

2
=

√

(s− d)(s− a)

ad+ bc
,

cos
D

2
=

√

(s− a)(s− b)

ab+ cd

if and only if it is a cyclic quadrilateral, where s is the semiperimeter.
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Proof. (⇒) First we derive the third formula in a cyclic quadrilateral.
Applying the law of cosines in triangles BCD and ABD yields

b2 + c2 − 2bc cosC = a2 + d2 − 2ad cosA

which implies

b2 + c2 − a2 − d2 = 2(ad+ bc) cosC

since cosA = cos (π − C) = − cosC in a cyclic quadrilateral. Using a tri-
gonometric half angle formula, we get

cos2
(

C

2

)

=
1

2

(

1 +
b2 + c2 − a2 − d2

2(ad+ bc)

)

=
(b+ c)2 − (a− d)2

4(ad+ bc)

=
(b+ c+ a− d)(b+ c− a+ d)

4(ad+ bc)

=
(s− d)(s− a)

ad+ bc

and the third formula follows. The other proofs are similar, or more easily,
these formulas follow from a symmetry argument.

Figure 3. A non-cyclic quadrilateral ABCD

(⇐) If ABCD is not cyclic, suppose vertex A lies outside of the circum-
circle to triangle BCD. Let A′ be the point where diagonal AC intersects
this circumcircle. Then ∠BA′D ≡ ∠A′ > ∠A ≡ ∠BAD (see Figure 3), im-
plying cosA′ < cosA since cosine is decreasing on the interval [0, π]. Thus
cosA′ = − cosC since A′BCD is cyclic, so cosA > − cosC. We have by the
law of cosines

b2 + c2 − 2bc cosC = a2 + d2 − 2ad cosA < a2 + d2 + 2ad cosC;

whence

cosC >
b2 + c2 − a2 − d2

2(ad+ bc)
.

Doing the same factorization as in the direct part of the proof, we get

cos
C

2
>

√

(s− a)(s− d)

ad+ bc
.
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For angle A, it holds that cosC > − cosA, so

a2 + d2 − 2ad cosA < b2 + c2 + 2bc cosA.

Thus

a2 + d2 − b2 − c2 < 2(ad+ bc) cosA

and we get

cos
A

2
>

√

(s− b)(s− c)

ad+ bc
.

For the other two angles, we have ∠B > ∠B′ ≡ ∠CBA′ and ∠D >

∠D′ ≡ ∠CDA′ (see Figure 3). Then ∠B + ∠D > ∠B′ + ∠D′ = π. Thus
cosD < cos (π −B) = − cosB. We get

a2 + b2 − 2ab cosB > c2 + d2 + 2cd cosB

from which

a2 + b2 − c2 − d2 > 2(ab+ cd) cosB.

Hence

cosB <
a2 + b2 − c2 − d2

2(ab+ cd)
⇒ cos

B

2
<

√

(s− c)(s− d)

ab+ cd
.

In the same way we also have

cos
D

2
<

√

(s− a)(s− b)

ab+ cd
.

When vertex A instead is inside the circumcircle to BCD, then all in-
equalities are reversed, completing the proof. �

3. Characterizations concerning the diagonals

In this section we will use the notations p and q for the lengths of the
diagonals AC and BD respectively in a convex quadrilateral ABCD with
sides a = AB, b = BC, c = CD and d = DA.

A well-known necessary condition of cyclic quadrilaterals is Ptolemy’s the-

orem, named after the Roman astronomer Claudius Ptolemy in the second
century. That it is also a sufficient condition was proved by the Swiss math-
ematician Leonhard Euler in the eighteenth century. It is possible to find
many different proofs of the direct part of this theorem in the mathematical
literature, employing for instance similarity [24, pp. 11–12], area methods
[6], trigonometry [21], complex numbers [24, pp. 12–13], vectors [19], and
inversion [4, pp. 103–104]. Ptolemy’s theorem is quite often stated as a char-
acterization, but far from all such sources actually prove the converse. The
most common way to prove the converse is with similarity, either using an
internal or an external point to form similar triangles, as in [2, pp. 128–129].
Our proof is of this latter type. Other proofs of the converse use transfor-
mations (spiral similarity [3, pp. 40–41] or inversion [4, pp. 103–104]), but
the key step is applying the triangle inequality.
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Theorem 3.1 (Ptolemy). In a convex quadrilateral with consecutive sides

a, b, c and d, the product of the diagonals p and q satisfies

pq = ac+ bd

if and only if it is a cyclic quadrilateral.

Proof. (⇒) In a cyclic quadrilateral ABCD, extend side AB and choose a
point Q on this extension such that ∠QDA = ∠BDC (see Figure 4). Then
triangles QAD and BCD are similar since we also have ∠QAD = ∠BCD

(Theorem A.4 in [18]). Thus

BC

QA
=

DC

DA
⇒ BC ·DA = QA ·DC.

Triangles CDA and BDQ are also similar, so

CD

BD
=

AC

QB
⇒ AC ·BD = QB · CD.

Hence

AB · CD +BC ·DA = AB · CD +QA · CD = QB · CD = AC ·BD.

Figure 4. Point Q is chosen such that ∠QDA = ∠BDC

(⇐) Outside of a convex quadrilateral where

(3) AB · CD +BC ·DA = AC ·BD,

we choose a point S such that ∠SDA = ∠BDC and ∠ASD = ∠CBD. Note
that we cannot yet be sure that SAB is a straight line segment. Triangles
SAD and BCD are similar (see Figure 5), so

(4)
DC

DA
=

BC

SA
=

BD

SD
⇒ DA

SD
=

DC

BD
.

Together with ∠ADC = ∠SDB, this implies that triangles ADC and SDB

are also similar (SAS); whence

(5)
AD

SD
=

CD

BD
=

AC

SB
.

From (4) and (5) we have DA · BC = CD · SA and AC · BD = CD · SB.
Inserting these into (3), we get

AB · CD + CD · SA = CD · SB.
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Thus AB + SA = SB which proves that A is on SB according to the
degenerate case of the triangle inequality (so SAB is a straight line segment).
Then

∠DAC = ∠DSB = ∠DSA = ∠DBC

which proves that ABCD is a cyclic quadrilateral (Theorem A.1 in [18]). �

Figure 5. Point S is chosen so we get similar triangles

From the proof of the converse we also have that in all non-cyclic convex
quadrilaterals, it holds

pq < ac+ bd

due to the triangle inequality. This is usually called Ptolemy’s inequality,
but as far as we know, it was proved for the first time by Euler.

We note that an appealing way of writing Ptolemy’s theorem is

AC ·BD = ac+ bd.

A simple proof of both directions is by using a generalization of the theo-
rem, which can be found in [22]. It was however first published in 1842 by the
German mathematician Carl Anton Bretschneider [5]. This generalization
of Ptolemy’s theorem states that in a convex quadrilateral ABCD:

(6) p2q2 = a2c2 + b2d2 − 2abcd cos (A+ C)

where a, b, c and d are the consecutive sides of the quadrilateral. We know
that a convex quadrilateral is cyclic if and only if ∠A+ ∠C = π. Inserting
this into (6) and simplifying, we get

(pq)2 = (ac+ bd)2

from which Ptolemy’s theorem and its converse follow directly.
Another thing worth mentioning is that the equality in Ptolemy’s theorem

also holds true if the four points A, B, C and D are collinear, which was
noted by Euler [11, p. 3]. This is one of the reasons why a straight line can
be considered a special case of a circle with infinite radius.

There is a trigonometric version of Ptolemy’s theorem that is also a char-
acterization of cyclic quadrilaterals. This is not so well known, and we have
only found it stated (with a misprint where the angles on the left hand side
were interchanged) as a lemma in a collection of geometrical formulas [7, p.
6], without a proof.
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Theorem 3.2. In a convex quadrilateral ABCD, the relation

AB · sin∠CAD +AD · sin∠CAB = AC · sin∠BAD

holds if and only if it is a cyclic quadrilateral.

Proof. (⇒) In a cyclic quadrilateral ABCD with circumradius R, we have
CD = 2R sin∠CAD, BC = 2R sin∠CAB and BD = 2R sin∠BAD accord-
ing to the extended law of sines. Inserting these into Ptolemy’s theorem

AB · CD +BC ·AD = AC ·BD

directly yields the relation in the theorem after canceling the common factor
2R.

(⇐) For the converse, consider the circumcircle to triangle ABD. As we
vary point C along the diagonal AC, the left hand side of the relation in
the theorem stays constant, while the right hand side increases as C moves
outside the circumcircle and decreases when C moves inside the circumcircle
since this changes AC but angle BAD is constant (see Figure 6). Thus for
equality to hold, point C must be on the circumcircle to triangle ABD,
making ABCD a cyclic quadrilateral. �

Figure 6. Point C moving along diagonal AC

How about if we substitute the remaining three lengths in this trigono-
metric version for sine expressions using the extended law of sines? Then we
get a sine identity that is valid in cyclic quadrilaterals, but it is not a suffi-
cient condition for a convex quadrilateral to be cyclic. This can be verified
in a dynamic geometry computer program.

Applying Ptolemy’s theorem, we get a necessary and sufficient condition
on the angle between the diagonals for when a quadrilateral is cyclic.

Theorem 3.3. In a convex quadrilateral with consecutive sides a, b, c and

d, the acute angle between the diagonals satisfies

cos θ =

∣

∣a2 − b2 + c2 − d2
∣

∣

2(ac+ bd)

if and only if it is a cyclic quadrilateral.
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Proof. Let e, f , g, h be the diagonal parts. Applying the law of cosines in
the four subtriangles created by the diagonals (see Figure 7), we have

a2 = e2 + f2 − 2ef cos (π − θ),

b2 = f2 + g2 − 2fg cos θ,

c2 = g2 + h2 − 2gh cos (π − θ),

d2 = h2 + e2 − 2he cos θ.

From these we get

a2−b2+c2−d2 = 2(ef+fg+gh+he) cos θ = 2(e+g)(f+h) cos θ = 2pq cos θ

where p and q are the diagonal lengths. But we do not know which of
the two angles between the diagonals that is the acute one, so in a convex
quadrilateral the acute angle satisfies

(7)
∣

∣a2 − b2 + c2 − d2
∣

∣ = 2pq cos θ.

The quadrilateral is cyclic if and only if pq = ac+ bd. Inserting this expres-
sion and solving for the cosine, we get the stated formula. �

Figure 7. The diagonal parts

The next theorem concerns the lengths of the diagonals in terms of the
four sides. This characterization was proved the same way in [27].

Theorem 3.4. In a convex quadrilateral ABCD with consecutive sides a,

b, c and d, the lengths of the diagonals AC and BD are respectively

p =

√

(ac+ bd)(ad+ bc)

ab+ cd
,

q =

√

(ab+ cd)(ac+ bd)

ad+ bc

if and only if ABCD is a cyclic quadrilateral.

Proof. We begin by deriving a formula for the length of diagonal BD = q

in a convex quadrilateral. Applying the law of cosines in triangles ABD and
BCD, we have

q2 = a2 + d2 − 2ad cosA,

q2 = b2 + c2 − 2bc cosC.
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Now we multiply the first of these equations by bc and the second by ad, so

bcq2 = a2bc+ bcd2 − 2abcd cosA,

adq2 = adb2 + adc2 − 2abcd cosC.

Adding these two yields

(bc+ ad)q2 = ac(ab+ cd) + bd(cd+ ab)− 2abcd(cosA+ cosC).

Hence

(8) q2 =
(ab+ cd)(ac+ bd)− 2abcd(cosA+ cosC)

(ad+ bc)
.

According to Theorem 2.2, the quadrilateral is cyclic if and only if cosA+
cosC = 0, so it is cyclic if and only if

(9) q2 =
(ab+ cd)(ac+ bd)

ad+ bc
.

In the same way we can derive a formula for the length of the diagonal
AC in a convex quadrilateral. Then we get

(10) p2 =
(ac+ bd)(ad+ bc)− 2abcd(cosB + cosD)

(ab+ cd)
.

Again using Theorem 2.2, the quadrilateral is cyclic if and only if cosB +
cosD = 0, so it is cyclic if and only if

(11) p2 =
(ac+ bd)(ad+ bc)

ab+ cd

completing the proof. �

The direct part of the next theorem has been called Ptolemy’s second
theorem. We have however been unable to find any reference that it was
actually known to Ptolemy. Instead we are quite sure that this metric re-
lation first appeared in the book Brāhmasphut.asiddhānta by Brahmagupta
[29, pp. 198–199], a seventh century Indian mathematician. He was also the
first to derive the formulas in Theorem 3.4. The converse in the following
theorem is much newer. It is possible that it first appeared in 2003 [27].
However, the implication

∠A+ ∠C > π ⇒ p

q
<

ad+ bc

ab+ cd
,

which is half of the converse, was a problem by A. N. Danilov in 1969
according to [25, p. 401].

Theorem 3.5. In a convex quadrilateral with consecutive sides a, b, c and

d, the quotient of the the diagonals p and q satisfies

p

q
=

ad+ bc

ab+ cd

if and only if it is a cyclic quadrilateral.
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Proof. (⇒) We cite a short and clever proof of the necessary condition
from [1]. If the quadrilateral ABCD is cyclic, all the triangles ABD, BCA,
CDB and DAC have the same circumcircle, with circumradius R. Using
the well-known formula T = abc

4R for the area of a triangle with sides a, b, c
and circumradius R, we get

adq

4R
+

bcq

4R
=

abp

4R
+

cdp

4R
since each side is equal to the area of the quadrilateral. Hence

q(ad+ bc) = p(ab+ cd)

and the direct theorem follows. (Note that it also follows at once by simpli-
fying the quotient of (11) and (9).)

(⇐) The idea we use for the proof of the converse comes from [23]. If
the quadrilateral is not cyclic, assume first that ∠A + ∠C > π. Then
∠B + ∠D < π and by the proof of Theorem 2.2 we have cosA+ cosC < 0
and cosB + cosD > 0. From (10) and (8) we get

p2 <
(ac+ bd)(ad+ bc)

ab+ cd

and

q2 >
(ab+ cd)(ac+ bd)

ad+ bc
.

Dividing these yields

p2

q2
<

(ac+ bd)(ad+ bc)

ab+ cd
· ad+ bc

(ab+ cd)(ac+ bd)
=

(ad+ bc)2

(ab+ cd)2
.

Hence

(12)
p

q
<

ad+ bc

ab+ cd
.

If ∠A+ ∠C < π, all inequalities are reversed, so we get

(13)
p

q
>

ad+ bc

ab+ cd

completing the proof. �

Another characterization involving the diagonals and the sides is the fol-
lowing. The direct part of the theorem was discussed at [20].

Theorem 3.6. The lengths of the diagonals p and q and the consecutive

sides a, b, c and d of a convex quadrilateral satisfy

|p− q|
p+ q

=
|a− c|
a+ c

· |b− d|
b+ d

if and only if it is a cyclic quadrilateral.

Proof. Since the proof of the direct and the converse theorem are very
similar, we only give the proof of the converse. A proof of the direct theorem
is obtained simply by changing all inequalities to equalities.

If the quadrilateral is not cyclic, then

p

q
<

ad+ bc

ab+ cd
or

p

q
>

ad+ bc

ab+ cd
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depending on if ∠A + ∠C > π or ∠A + ∠C < π respectively according to
the proof of Theorem 3.5. The inequality in the first case is equivalent to

q

p
>

ab+ cd

ad+ bc
.

Thus we get

|p− q|
p+ q

=

∣

∣1− q
p

∣

∣

1 + q
p

<

∣

∣1− ab+cd
ad+bc

∣

∣

1 + ab+cd
ad+bc

=
|ad+ bc− (ab+ cd)|
ad+ bc+ ab+ cd

=
|(a− c)(d− b)|
(a+ c)(d+ b)

.

This proves that if ∠A+ ∠C > π, then

|p− q|
p+ q

<
|a− c||d− b|
(a+ c)(d+ b)

.

In the same way we can prove that the second case ∠A+∠C < π implies

|p− q|
p+ q

>
|a− c||d− b|
(a+ c)(d+ b)

which completes the proof. �

Let us now discuss the signs of the expressions a − c, b − d and p − q in
the numerators in the previous theorem. From Theorem 3.4 we have that
in a cyclic quadrilateral, p2 > q2 is equivalent to

(ac+ bd)(ad+ bc)

ab+ cd
− (ab+ cd)(ac+ bd)

ad+ bc
> 0.

Factoring this expression yields

− (a− c)(a+ c)(b− d)(b+ d)(ac+ bd)

(ab+ cd)(ad+ bc)
> 0.

Since p > 0 and q > 0, we get that

p− q > 0 ⇔ −(a− c)(b− d) > 0 ⇔ (a− c)(b− d) < 0.

This means that exactly one of the expressions a− c and b− d is negative.
In the same way we have

p− q < 0 ⇔ −(a− c)(b− d) < 0 ⇔ (a− c)(b− d) > 0.

Thus both of a−c and b−d are either positive or negative. In conclusion this
proves that in a cyclic quadrilateral, either one or all three of the expressions

a− c, b− d and p− q are negative.

Taking a closer look at Theorems 3.5 and 3.6 we might suspect there is
another (shorter) way of deriving one of them from the other. This is true.
A direct calculation confirms that

(p+ q)(a− c)(b− d)− (q − p)(a+ c)(b+ d)

= abp− bcp− adp+ cdp+ abq − bcq − adq + cdq

− (−abp− bcp− adp− cdp+ abq + bcq + adq + cdq)

= 2[p(ab+ cd)− q(ad+ bc)].

The last expression is equal to zero if and only if the first expression is equal
to zero. Hence

p

q
=

ad+ bc

ab+ cd
⇔ q − p

p+ q
=

(a− c)(b− d)

(a+ c)(b+ d)
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which proves that the equality in Theorem 3.6 is a necessary and sufficient
condition for a quadrilateral to be cyclic since Theorem 3.5 is so.

The next characterization is about the quotient of the diagonals expressed
in terms of four subtriangle areas. To prove the direct theorem, that this
equality holds in a cyclic quadrilateral, was given as a problem at [26].

Theorem 3.7. If the diagonals of a convex quadrilateral ABCD intersect

at P and triangles ABP , BCP , CDP and DAP have areas S1, S2, S3 and

S4 respectively, then the quotient of the diagonals p and q satisfies

p

q
=

√
S1S4 +

√
S2S3√

S1S2 +
√
S3S4

if and only if ABCD is a cyclic quadrilateral.

Proof. Let θ be one of the angles between the diagonals. The four sub-
triangles have areas S1 = 1

2ef sin θ, S2 = 1
2fg sin θ, S3 = 1

2gh sin θ and

S4 =
1
2he sin θ (see Figure 7), since sin (π − θ) = sin θ. Thus

√

S1S4 =
1
2e
√

fh sin θ,
√

S2S3 =
1
2g

√

fh sin θ,
√

S1S2 =
1
2f

√
eg sin θ,

√

S3S4 =
1
2h

√
eg sin θ.

Hence we get that
√
S1S4 +

√
S2S3√

S1S2 +
√
S3S4

=

√
fh(e+ g)√
eg(f + h)

=

√

fh

eg
· p
q
.

According to the intersecting chords theorem and its converse (Theorem A.5
in [18]), fh = eg if and only if ABCD is a cyclic quadrilateral. �

We have no known reference for the following formula, which is yet another
characterization regarding the quotient of the diagonals, this time expressed
in terms of the four vertex angles.

Theorem 3.8. In a convex quadrilateral ABCD, the quotient of the diag-

onals p and q satisfies

p

q
=

cos B
2 cos D

2

cos A
2 cos C

2

if and only if ABCD is a cyclic quadrilateral.

Proof. (⇒) In a cyclic quadrilateral, using formulas from Theorem 2.4 we
have

cos B
2 cos D

2

cos A
2 cos C

2

=

√

(s−c)(s−d)
ab+cd

√

(s−a)(s−b)
ab+cd

√

(s−b)(s−c)
ad+bc

√

(s−a)(s−d)
ad+bc

=
ad+ bc

ab+ cd
=

p

q

where we applied Theorem 3.5 in the last equality.
(⇐) If the quadrilateral is not cyclic, assume first that vertex A lies

outside the circumcircle to triangle BCD. Then, from inequalities derived
in the proof of Theorems 2.4, we get

cos B
2 cos D

2

cos A
2 cos C

2

<

√

(s−c)(s−d)
ab+cd

√

(s−a)(s−b)
ab+cd

√

(s−b)(s−c)
ad+bc

√

(s−a)(s−d)
ad+bc

=
ad+ bc

ab+ cd
<

p

q
.
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The last inequality is due to (13), since ∠A+ ∠C < π.
In the other case, when A lies inside the circumcircle to triangle BCD,

all inequalities are reversed. Thus

cos B
2 cos D

2

cos A
2 cos C

2

>
ad+ bc

ab+ cd
>

p

q

where the last inequality is due to (12), completing the proof. �

Note that the formula in Theorem 3.8 can also be written in the symmetric
form

AC cos
A

2
cos

C

2
= BD cos

B

2
cos

D

2
.

4. A characterization concerning an incircle

A quadrilateral that can have an incircle is often called a tangential
quadrilateral. To prove the following characterization was given as a problem
by Juan-Bosco Romero Márquez in the Canadian problem solving journal
Crux Mathematicorum, with a solution published in [28]. We give a much
shorter proof of the converse.

Theorem 4.1. In a convex quadrilateral ABCD where the diagonals inter-

sect at P , let E, F , G and H be the feet of the perpendiculars to the sides

through P . Then EFGH is a tangential quadrilateral if and only if ABCD

is a cyclic quadrilateral.

Proof. Let E, F , G and H be on AB, BC, CD and DA respectively.
Quadrilaterals AEPH and BFPE are always cyclic since they each have a
pair of opposite right angles.

Figure 8. EFGH is tangential iff ABCD is cyclic

(⇒) When ABCD is cyclic, we have that (see Figure 8)

∠HEP = ∠HAP = ∠DAC = ∠CBD = ∠FBP = ∠FEP
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so EP is the angle bisector to angle HEF . In the same way FP , GP

and HP are angle bisectors to the other vertex angles EFG, FGH and
GHE respectively. This makes EFGH a tangential quadrilateral since a
quadrilateral has an incircle if and only if the angle bisectors to the vertex
angles are concurrent according to a well-known characterization.

(⇐) Conversely, if EFGH is a tangential quadrilateral (see Figure 8),
then we directly get

∠DAC = ∠HAP = ∠HEP = ∠FEP = ∠FBP = ∠CBD

which proves that ABCD is cyclic (according to Theorem A.1 in [18]). �

It is an easy exercise to prove that when EFGH is a tangential quadri-
lateral, then P is the center of its incircle.

In [13, p. 16] we proved a related result: Quadrilateral ABCD has per-
pendicular diagonals if and only if EFGH is a cyclic quadrilateral.

5. An area characterization

We can model a convex quadrilateral as being built by four very thin rods
connected with hinges at their endpoints. If we push on it, its area will be
the largest possible if and only if the quadrilateral can be inscribed in a
circle according to our last characterization.

Theorem 5.1. A convex quadrilateral with given sides has maximal area if

and only if it is cyclic.

Proof. Suppose we have a convex quadrilateral with consecutive sides a, b, c
and d, which all have lengths that cannot be changed, but the angles between
them can vary. Then we are to prove that the area of this quadrilateral is
maximal if and only if it is cyclic. The area K of a convex quadrilateral
with diagonals p and q is given by the formula

K = 1
2pq sin θ

where θ is one of the angles between the diagonals. This formula is easy to
derive and quite well-known (one proof was given in [10]). Rewriting it, we
have that the quadrilateral area satisfies

16K2 = 4p2q2
(

1− cos2 θ
)

and inserting (6) and (7) into this equality, we get

16K2 = 4
(

a2c2 + b2d2 − 2abcd cos (A+ C)
)

−
(

a2 − b2 + c2 − d2
)2

.

Thus the area is maximal if and only if the angle term −2abcd cos (A+ C)
is maximal. This is equivalent to that the cosine factor is minimal, that is
cos (A+ C) = −1, which in turn is equivalent to ∠A + ∠C = π, that is, if
and only if the quadrilateral is cyclic. �

Defining the semiperimeter s = 1
2(a + b + c + d) and performing some

factorizations of the area expression in the last theorem, we have as a con-
sequence:
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Corollary 5.1. The area of a convex quadrilateral with consecutive sides a,

b, c and d satisfies

K ≤
√

(s− a)(s− b)(s− c)(s− d)

where s is the semiperimeter. Equality holds if and only if the quadrilateral

is cyclic.

The equality case is the well-known Brahmagupta’s formula. We leave
the details of these skipped steps to be carried out by the reader.

6. A remark on proving converses

This paper has been a continuation to [18], where we collected 19 char-
acterizations of cyclic quadrilaterals with proofs. One thing that has been
a considerable difference between that paper and this is how the converses
have been proved. In the present paper, half of the converses were proved
using the contrapositive statement, a method that was applied only once in
[18]. In that paper on the other hand, half of the converses were proved by
showing that a theorem is equivalent to a previously proved characteriza-
tion, thus proving both the necessary and sufficient condition at the same
time – what we like to call an equivalence proof (used for instance to prove
Theorem 1.1 in this paper). The second most applied method in [18] was
using a direct proof of the converse, which was applied only twice in this
paper. The reason for these differences is certainly since there were more
basic theorems in [18].

Anyway, there are four different techniques for proving a converse (direct
proof, contrapositive proof, proof by contradiction, and equivalence proof)
and all four methods have been applied in our two papers on characteri-
zations of cyclic quadrilaterals. Therefor this collection may be of interest
not only for its geometrical contents, but also when studying different proof
techniques in some university course or even at the secondary school level.

7. Concluding remarks

Properties of cyclic quadrilaterals receive much attention in Olympiad
problem solving. In our two part exploration of cyclic quadrilaterals, we have
seen that lots of their properties are in fact not only necessary conditions but
sufficient conditions as well. In quadrilateral geometry it is quite common
that the converse to a property is also true, and this especially holds for the
top classes in a classification of convex quadrilaterals (see [15, p. 81]). This
has been demonstrated in our previous papers about characterizations of
orthodiagonal quadrilaterals [13], tangential quadrilaterals [12], extangential
quadrilaterals [16], trapezoids [14], and cyclic quadrilaterals [18].

But not all properties even for those classes can be reversed. In the
case of cyclic quadrilaterals, when the converse is not true, then instead
of ∠A + ∠C = π the quadrilateral often has the property ∠A = ∠C (a
tilted kite, see [17]). This is likely to occur if the problem can be solved
using the law of sines or other formulas with sine functions, such as the
well-known trigonometric formula T = 1

2ab sinC for the area of a triangle.
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As an example, consider the following theorem, which was Problem 332 at
[8]: If the diagonals intersect at P in a cyclic quadrilateral ABCD, then

AP

CP
=

DA ·AB
BC · CD

.

Here the converse does not hold. It is easy to see that kites also satisfy the
relation, and in fact, a calculation shows that it is true in all quadrilaterals
where ∠A = ∠C (see [17, pp. 94–95]).

There certainly exists other characterizations of cyclic quadrilaterals than
the 34 we have collected in our two papers on this subject. Several more of
both known och yet unknown properties of cyclic quadrilaterals can surely
be proved to be sufficient conditions as well. These are just waiting to
be discovered and presented to the world in mathematics competitions, in
problem solving journals, on mathematical websites, or in new intriguing
papers. We hope to see more of this fascinating subject in the future.
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