
INTERNATIONAL JOURNAL OF GEOMETRY
Vol. 8 (2019), No. 1, 32 - 37

SECOND NOTE ON JERABEK’S HYPERBOLA

PARIS PAMFILOS

Abstract. In this article we study the concurrence on a point of the Jerabek hyperbola,
of a triangle ABC, of three lines defined by a point P on the circumcircle of the triangle.
These lines are the Steiner line of P, the trilinear polar of P and the line whose orthopole
is a point D on the Euler circle, such that the line DP passes through the orthocenter.

1 The Jerabek hyperbola

This article complements a recently published article [4], bringing in connection the re-
sults proved there with the result published in [1], describing the Jerabek hyperbola as
the geometric locus of the intersection point of the Steiner line and a line passing through
the circumcenter of the triangle of reference. In fact, in [4] it was shown that the Jerabek’s
rectangular hyperbola of the triangle ABC is generated by the intersections X = (sP, tP) of
the Steiner line sP and the trilinear polar tP of a point P moving on the circumcircle of ABC
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Figure 1: Jerabek’s hyperbola as a geometric locus

(See Figure 1). In addition the map X = f (P) was seen to be a projectivity, mapping the
circumcircle κ onto the Jerabek hyperbola, in such a way, that the lines PX pass always
through the triangle center X(74).
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Figure 2: Jerabek’s hyperbola as a geometric locus II

On the other side, in [1] it was shown that the Jerabek hyperbola can be described
as the geometric locus of intersection points X ′ = (sP,oD), where oD is a line, whose or-
thopole is the point D on the Euler circle, such that DP passes through the orthocenter H
of the triangle (See Figure 2). In view of the aforementioned results it is obvious, that the
two points concur, X = X ′, and the three lines {sP, tP,oD} meet at a point X of Jerabek’s
hyperbola.

Next section deals with some details concerning orthopoles. The motivation for this
came from the reference in [1] saying that “EF orthopolar of P w.r to ABC”, which is
misleading. Actually it is D the orthopole of EF = oD and next section supplies a synthetic
proof of this, which could be known, but I have not found a reference for it. In the
last section we show that the harmonic conjugate t ′P of tP with respect to {sP,oD} passes
through the triangle center X(64), lying also on the hyperbola.

2 Orthopoles in short

Given a line ε , draw orthogonals {AA′,BB′,CC′} to ε from the vertices of the triangle ABC,
and subsequently draw orthogonals {A′A′′,B′B′′,C′C′′} to the opposite sides (See Figure
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Figure 3: Orthopole D of the line ε w.r. to triangle ABC

3). It is proved that the last three lines concur at a point D, called the orthopole of ε
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w.r. to ABC ([3, p.12]). It is also proved that D is contained in the (Wallace-Simson) WS-
line λ (L), which is orthogonal to ε . Thus, if ε moves parallel to itself, its orthopole D
moves on the fixed line λ . When ε intersects the circumcircle of ABC, it is proved that
the orthopole is the common point of the three WS-lines {λ (L),µ(M),ν(N)}, where λ is
as before and {µ ,ν} are the WS-lines of the intersection points {M,N} of the circumcircle
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Figure 4: Orthopole D of ε as intersection of {λ (L),µ(M),ν(N)}

with ε (See Figure 4). Since the WS-lines of diametral points of the circumcircle intersect
orthogonally on points of the Euler circle, we conclude that the orthopoles of diameters
are on the Euler circle of the triangle. The two next lemmata supply the details of the
constructions performed in [1].
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Figure 5: Diameter related to point P on the circumcircle

Lemma 1. From a point P of the circumcircle κ(O) of triangle ABC draw the orthogonal lines
{PB′,PC′} to {PB,PC}, intersecting the sides {AC,AB} at points {B′′,C′′}. Then, the line B′′C′′

passes through the center O of κ and intersects BC at A′′ forming a right angle ̂APA′′.

Proof. To show this, notice first that the pairs {(B,B′),(C,C′)} consisting of diametral
points of the circumcircle, define a rectangle (See Figure 5). Then, it is easy to see that
circles {β = (PBC′′),γ = (PCB′′)} intersect at a point D on B′′C′′ and similarly the two cir-
cles {(AC′B),(ACB′)} intersect also at a point E on B′′C′′ and the triangles {DBC,EC ′B′}
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have parallel sides and are congruent. From this follows that line ED or B′′C′′ passes
through O.

To show the other claim about the right angle, consider the orthogonal ε to B ′′C′′ at D,
which is a bisector of the angle B̂DC, hence intersects BC at a point U , which is harmonic
conjugate to A′′ w.r. to {B,C}. This implies that PA′′ intersects κ at a point Q, such that
its intersection point V with ε is also harmonic conjgugate to A′′ w.r. to {P,Q}. Consider
now the points {T = (BQ,PC),S = (PB,CQ)}. In the complete quadrilateral defined by the
quadrangle TPSQ line TS is the polar of A′′ w.r. to the lines {SB,SC}, hence TS coincides
with UV = ε . Point T is on circle β . This, because ̂C′′DT and ̂C′′PT are right angles, hence
C′′DTP is cyclic. Also S is on γ , since {P̂CQ = P̂BQ = ̂PDT}, hence PDCS is cyclic. The
angle Q̂CA is right since it is opposite to {Q̂BA = ̂TBC′′ = ̂C′′DT}, which is right. This
completes the proof, since ÂPQ, being opposite to ÂCQ is also right.
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Figure 6: The orthopole D of the diameter ε

Lemma 2. Let ε = B′′C′′ be the diameter constructed from a point P as in the previous lemma
and {A1,B1,C1} be the projections of the vertices of the triangle on ε . Then the following are valid
properties.

1. The circles {α = (PAA1),β = (PBB1),γ = (PCC1)} define an intersecting pencil.

2. The other than P intersection point of the pencil lies on line PH , where H is the orthocenter
of the triangle.

Proof. For nr-1 consider such a circle, β say. Notice then that B1BPB′′ is cyclic with right
angles at {B1,P}, hence BB′′ is a diameter of the circle β . Similarly CC′′ is a diameter of
γ . By lemma 1, AA′′ is also a diameter of α . Since the three diameters {AA′′,BB′′,CC′′}
are diagonals of the complete quadrilateral defined by the quadrangle BCB ′′C′′, the claim
follows from the well known property that the circles with diameters these diagonals
define a pencil of circles, which is of intersecting type, since P is on all three circles.

Nr-2 follows by observing that each one of the circles {α ,β ,γ} contains correspond-
ingly the altitude {AA0,BB0,CC0} of the triangle as a chord. Hence, the orthocenter H of



A second note on Jerabek’s hyperbola 36

the triangle satisfying HA ·HA0 = HB ·HB0 =HC ·HC0 has the same power w.r. to all three
circles, consequently is on the radical axis of the pencil, thereby proving the claim.

Theorem 1. With the notation and the conventions adopted so far, the other common point D of
the three circles {α ,β ,γ} is on the Euler circle of ABC and coincides with the orthopole of line ε .

Proof. To prove the first claim, consider the product HD ·HP for the circle β . Let {H ′′,B2}
be the intersection points of {HD,HB} with the Euler circle (See Figure 6). Since H is the
homothety center of the homothety with ratio 1/2, transforming the circumcircle κ to the
Euler circle, this product is equal to

HD ·HP= 2HD ·HH ′′ = 2HB0 ·HB2.

Since {B0,B2,H ′′} are on the Euler circle, this equation expresses the power of H w.r. to
the Euler circle and implies that D is on that circle.

To show the second claim it suffices to show that the lines {B1D,C1D,A1D} are re-
spectively orthogonal to the sides {AC,BA,BC}. We show this for B 1D, the other cases
being similar. For this, extend BB1 to its double to point B3, which is on the circumcir-
cle κ = (ABC), since the medial line of BB3 is ε containing the center O of κ . Let also H ′

be the intersection of PD with κ . Both quadrangles {BB3H ′P,BB1DP} are cyclic, hence
their respective angles at {H ′,D}, being opposite to ̂B1BP are equal, consequently lines
{B3H ′,B1D} are parallel. Since D, being on the Euler circle, is the middle of HH ′ line B1D
is also parallel to BH , which is orthogonal to AC.

3 X(64)

This triangle center, defined in Kimberling’s list [2] as the “isogonal conjugate of X(20)” is
on Jerabek’s hyperbola, since this is the isogonal conjugate of the Euler line and X(20),
called also “de Longchamps point” is a point of that line. The following theorem results
from a typical calculation.

Theorem 2. The four points {X(3),X(4),X(6),X(64)} on the Jerabek hyperbola form a harmonic
quadruple of conic points.

Proof. Since the Jerabek hyperbola passes through the vertices of the triangle of reference
ABC, the proof reduces to showing that the pencil of the lines through these points and a
vertex of the triangle, B say, is harmonic. Using barycentric coordinates, the four points
are described as follows ([2]):

(circumcenter) X(3) : (a2SA : b2SB : c2SC),

(orthocenter) X(4) : (SBSC : SCSA : SASB),

(symmedian point) X(6) : (a2 : b2 : c2),

X(64) :

(
a2

a2SA −SBSC
:

b2

b2SB −SCSA
:

c2

c2SC −SASB

)
.

The four lines of the pencil are then described by equations of the form {αx+ γz = 0}:

BX(3) : α1x+ γ1z = (c2SC)x− (a2SA)z = 0,

BX(4) : α2x+ γ2z = (SASB)x− (SBSC)z = 0,

BX(6) : α3x+ γ3z = (c2)x− (a2)z = 0,

BX(64) : α4x+ γ4z =

(
c2

c2SC −SASB

)
x−

(
a2

a2SA −SBSC

)
z = 0.
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Here we used the standard notation {a = |BC|,b = |CA|,c = |AB|} and SA = (b2+c2−a2)/2,
SB = (c2 + a2 − b2)/2 and SC = (a2 + b2 − c2)/2. Having that, it suffices to show that the
cross ratio (

α1
γ1
− α3

γ3

)
(

α2
γ2
− α3

γ3

) :

(
α1
γ1
− α4

γ4

)
(

α2
γ2
− α4

γ4

) =−1,

which is a bit tedious, but otherwise unproblematic calculation.
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