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ON THE JERABEK HYPERBOLA

PARIS PAMFILOS

Abstract. In this article we study the Jerabek hyperbola of a triangle, representing
it as a geometric locus of intersections of Steiner lines and trilinear polars of points on
the circumcircle of the triangle of reference. In addition we exhibit and study some basic
properties of a related and naturally defined projectivity, which maps the circumcircle
onto the Jerabek hyperbola.

1 The Jerabek hyperbola

The Jerabek hyperbola of the triangle ABC is a rectangular hyperbola generated by the
centers of perspectivity P of the triangle ABC and the triangles A ′B′C ′, which are homo-
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Figure 1: Jerabek’s rectangular hyperbola of the triangle ABC

thetic to the tangential triangle A0B0C0 of ABC , w.r. to the circumcenter of ABC ([4, p.
448]) (See Figure 1).
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This hyperbola is the isogonal conjugate of the Euler line of the triangle ABC ([16, p.18])
and passes trhough the vertices, the orthocenter H , the circumcenter O, the symmedian
point K and also through other remarkable triangle centers ([11]) of ABC . The hyperbola
pertains to the Poncelet pencil ([2], [12]) of rectangular hyperbolas of the triangle, consist-
ing of all hyperbolas which pass through the vertices of the triangle and its orthocenter.
These hyperbolas are characterized also as the isogonal conjugates of all the diameter-
lines of the circumcircle. Their centers are the orthopoles of these diameter-lines and lie
on the Euler circle of the triangle ([9]). For the notions of isogonal and isogonal conjugate
and the use of trilinear coordinates, which handles them conveniently, a quick reference
can be found in the articles [10], [8] and a more detailed reference, extended with appli-
cations, in the book [14, vol.II]. The whole subject belongs to the geometry of the triangle,
expositions of which can be found in [16], [15], [13] and [7].

2 Alternative generation

Next theorem demonstrates the possibility to generate the Jerabek hyperbola of the trian-
gle ABC in a different way, using the trilinear polars and the Steiner lines of points P on its
circumcircle κ (See Figure 2). The trilinear polars tP of points P on the circumcircle κ pass

K

H

sP
tP

P

S'

T'T

A

B C

κ

S

X

Figure 2: Steiner line sP and trilinear polar tP of P ∈ κ

through the symmedian point K of the triangle ([4, p.126]) and the harmonic conjugate
T of the intersection T ′ = (PA,BC). The Steiner lines sP pass through the orthocenter H
and the reflected S ′ of P on BC . They are parallel to the corresponding Wallace-Simson
line of P and carry the reflected points of P w.r. to the sides of the triangle ([1, p.54]).
Thus, as point P wanders on the circumcircle κ, the correspoding lines {sP , tP } belong to
the pencils {H∗,K∗} of lines passing respectively through the points {H,K}. The theo-
rem shows that the intersection points {S = (sP , BC), T = (tP , BC)} of these lines with
BC are homographically related, i.e. their line coordinates {x, x′} satisfy a homographic
relation of the form

x′ =
ax+ b

cx+ d
, (1)

hence, by the Chasles-Steiner principle of generation of conics ([5, p.5], [3, p.72], [6, p.
259]), their intersection point X = (sP , tP ) generates a conic.

Theorem 2.1. The geometric locus of intersections X = (sP , tP ) of the Steiner line and the
trilinear polar w.r. to points P of the circumcircle κ of the triangle ABC is the Jerabek hyperbola
of the triangle.

Proof. Consider the system of coordinates whose x-axis is the side BC and the y-axis
is the altitude AO (See Figure 3). In this system, the coordinates of the vertices are
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Figure 3: Steiner line sP and trilinear polar tP of P ∈ κ

{A(0, a), B(b, 0), C(c, 0)}. The coordinates of the orthocenter H and its reflection H ′ on
BC are then easily seen to be {H(0,−bc/a),H ′(0, bc/a)} and the equation of the circum-
circle

a(x2 + y2)− a(b+ c)x− (bc+ a2)y + abc = 0. (2)

Starting with S(s, 0) on BC , the point P is found as intersection of the circle with line
H ′S, which is the reflection of line HS on BC .

P (p1, p2) with p1 =
s(a2cs+ a2bs+ b2c2 − a2bc)

a2s2 + b2c2
, p2 =

abc(s− b)(s − c)

a2s2 + b2c2
. (3)

By the definition of the trilinear polar, point T is the harmonic conjugate w.r. to (B,C) of
T ′ = (BC,AP ), whose coordinates are easily seen to be T ′(0, t′), with t′ = ap1/(a − p2).
The harmonic-conjugate relation gives

t =
t′(b+ c)− 2bc

2t′ + (b+ c)
. (4)

Replacing in this the values for t′ and (p1, p2), we arive after a short calculation, at the
expression of t in dependence of s

t =
(a2(b2 + c2) + 2b2c2)s− bc(c+ b)(bc+ a2)

(c+ b)(bc+ a2)s− bc(b2 + c2 + 2a2)
. (5)

This proves that points {S, T } are homographically related, hence X = (sP , tP ) describes
a conic. It is then easy to see that this conic passes through the vertices of the triangle and,
by the general properties of the Chasles-Steiner generation method, passes also from the
centers of the pencils {H∗,K∗} i.e. points {H,K}. This identifies the conic with the rect-
angular hyperbola of Jerabek.

Remark. Notice that the determinant of the homographic relation (5) is readily seen to be

D = −bc(a2 + b2)(a2 + c2)(c − b)2,

implying that the conic is genuine, except in the case b = 0 or c = 0, which corresponds
to a right triangle ABC . These are precisely the cases in which the corresponding Jerabek
hyperbola degenerates in the product of two orthogonal lines: the hypotenuse and the
altitude to it.
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3 A projectivity

We will need to pass from the cartesian coordinate system of the preceding section to
trilinear coordinates and show the existence of a naturally defined projectivity, mapping
the circumcircle onto the Jerabek hyperbola. Now the meaning of symbols changes and
{a, b, c} denote the side lengths of the triangle ABC . In addition we use the symbols
SA = (b2+ c2−a2)/2 = bc cos(Â) and the analogous {SB , SC} resulting from SA by cyclic
permutations of the letters. In dealing with trilinear coordinates it is advisable to shorten
notation, especially for long expressions, using symbols like (ab, . . . ) to denote triples
(ab, bc, ca), resulting by cyclic permutations of the letters, and similarly sums ab+ · · · = 0,
meaning ab+ bc+ ca = 0. We use also (u, . . . ) ∼ (v, . . . ) to express that the triples are non
zero multiples of each other, defining the same point in trilinears.

Jerabek’s hyperbola is described in trilinears (x, y, z) by the equation

(b2 − c2)SA
a

x
+ · · · = 0 (6)

It is readily seen that also
(b2 − c2)SA + · · · = 0 (7)

and from these two equations follows the relation of the triples

(
(b2 − c2)SA, . . .

)
= λ ·

(
b

y
− c

z
, . . .

)
. (8)

With this preparation, we consider now a pointX(x, y, z) of the hyperbola, and the chord-
line it defines through the symmedian point K(a, b, c). The equation of this line for run-
ning trilinears (u, v, w) is

(cy − bz)u+ · · · = 0.

And the trilinear pole of this line, which is a point on the circumcircle, is

P (x′, y′, z′) with (x′, y′, z′) ∼
(

1

cy − bz
, . . .

)
. (9)

Using the fact that trilinears are defined modulo a multiplicative constant, we show that
this triple depends linearly on (x, y, z). In fact, the triple on the right side is a multiple of(

1

x2y2z2
((az − cx)(bx− ay), . . .

)
. (10)

Working with the first coordinate of this, we notice that

1

x2y2z2
(az − cx)(bx − ay) =

az − cx

zx
· bx− ay

xy
· 1

yz
=

(a
x
− c

z

)
·
(
b

y
− a

x

)
· 1

yz
.

The last expression is, by means of equation 8,

(a
x
− c

z

)
·
(
b

y
− a

x

)
· 1

yz
=

1

λ2
(c2 − a2)SB(a

2 − b2)SC
1

yz

=
x

λ2xyz
(c2 − a2)(a2 − b2)SBSC .

Working analogously with the other coordinates of the triple in 10, we see that this can
be expressed as a multiple of(

(c2 − a2)(a2 − b2)SBSCx, . . .
)
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and by means of equation 9, the function P = g(X) can be expressed by

g(x, y, z) ∼ (
(c2 − a2)(a2 − b2)SBSCx, . . .

) ∼
(
(SA − SC)(SA − SB)

SA
x, . . .

)
. (11)

This shows that the map P = g(X) is projective, hence its inverse X = f(P ), which
coincides with the correspondence P �→ X of the preceding section, is a projective trans-
formation, mapping the circle onto the hyperbola. We formulate this as a theorem.

Theorem 3.1. The map, which to the point P of the circumcircle κ of the triangle ABC , cor-
responds the intersection point X = (sP , tP ) of the Steiner line and the trilinear polar of P , is
the restriction on κ of a projective transformation, mapping the circumcircle κ onto the Jerabek
hyperbola of ABC .

4 X(74)

The triangle center X(74) is the fourth intersection point of the Jerabek hyperbola with
the circumcircle κ of the triangle of reference ABC . It is also the isogonal conjugate of
the point at infinity of the Euler line of the triangle ([11]). The next few lemmata show
some other aspects of this triangle center, related to the projectivity f , established in the
previous section.
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Figure 4: Points {P,X,X(74)} are collinear

Lemma 4.1. All lines PX, for P on the circumcircle κ and X = f(P ), pass through X(74).

Proof. The trilinears of X(74) being given by ([11])(
a

SASC + SASB − 2SBSC
, . . .

)
∼

(
a

(b2 − c2)2 + a2(c2 + b2 − 2a2)
, . . .

)
,

it suffices to show that, for a point X(x, y, z) of Jerabek’s hyperbola, the determinant with
the above first row and the other two equal to

(x, y, z), and
(
(c2 − a2)(a2 − b2)SBSCx, . . .

)
,

is zero. But this determinant is easily seen to evaluate to a multiple of equation 6, which
by assumption now is satisfied by (x, y, z).

Lemma 4.2. The Euler line of the triangle is the line send to infinity by f .
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Proof. Since the line at infinity in trilinears is ax+ by+ cz = 0, it suffices to show that the
two points of it {U = (−b, a, 0), V = (−c, 0, a)} map via the inverse g of f onto the Euler
line, whose equation is given by

SA(SB − SC)ax+ · · · = 0.

Using equation 11 we see that

g(U) ∼ (−b(c2 − a2)(a2 − b2)SBSc, a(a2 − b2)(b2 − c2)SCSA, 0),

which is readily verified to be on the Euler line. Analogous is the proof for V .

Lemma 4.3. The tangents {δ, ε} to the circumcircle κ at its intersection points {D,E} with
the Euler line of ABC map under f to the the asymptotes of the Jerabek hyperbola, which are
respectively parallel to {DX(74), EX(74)}.
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Figure 5: Parallels to the asymptotes of Jerabek’s hyperbola

Proof. In fact, by lemma 4.2 points {D,E} map under f to points at infinity of the hy-
perbola lying respectively on lines {DX(74), EX(74)} (See Figure 5). In addition, the
tangents at {D,E} of κ map to corresponding tangents at the points at infinity, i.e. the
asymptotes of the hyperbola.
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Figure 6: Points corresponding under the projectivity f

By lemma 4.1 all triangle centers P lying on the circumcircle define via f , points
X = f(P ) lying on the Jerabek hyperbola, identified by the second intersection of line
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PX(74) with the hyperbola. Figure 6 shows a few of them, the verification of which can
be deduced from Kimberling’s great list [11] of triangle centers with a few additional
computations left as an exercise. Line ξ = X(107)X(110) maps via f onto the Euler line,
point X(110) mapping onto the circumcenter O = X(3) and its other intersection point

with the circumcircle Q =
(

1
a(b2−c2)S2

A
, . . .

)
mapping onto the orthocenter H = X(4).
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