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ON THE JERABEK HYPERBOLA

PARIS PAMFILOS

Abstract. In this article we study the Jerabek hyperbola of a triangle, representing
it as a geometric locus of intersections of Steiner lines and trilinear polars of points on
the circumcircle of the triangle of reference. In addition we exhibit and study some basic
properties of a related and naturally defined projectivity, which maps the circumcircle
onto the Jerabek hyperbola.

1 The Jerabek hyperbola

The Jerabek hyperbola of the triangle ABC' is a rectangular hyperbola generated by the
centers of perspectivity P of the triangle ABC and the triangles A’ B’C’, which are homo-

Figure 1: Jerabek’s rectangular hyperbola of the triangle ABC

thetic to the tangential triangle 4y ByCy of ABC, w.r. to the circumcenter of ABC ([4, p.
448]) (See Figure 1).
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This hyperbola is the isogonal conjugate of the Euler line of the triangle ABC ([16, p.18])
and passes trhough the vertices, the orthocenter H, the circumcenter O, the symmedian
point K and also through other remarkable triangle centers ([11]) of ABC. The hyperbola
pertains to the Poncelet pencil ([2], [12]) of rectangular hyperbolas of the triangle, consist-
ing of all hyperbolas which pass through the vertices of the triangle and its orthocenter.
These hyperbolas are characterized also as the isogonal conjugates of all the diameter-
lines of the circumcircle. Their centers are the orthopoles of these diameter-lines and lie
on the Euler circle of the triangle ([9]). For the notions of isogonal and isogonal conjugate
and the use of trilinear coordinates, which handles them conveniently, a quick reference
can be found in the articles [10], [8] and a more detailed reference, extended with appli-
cations, in the book [14, vol.ll]. The whole subject belongs to the geometry of the triangle,
expositions of which can be found in [16], [15], [13] and [7].

2 Alternative generation

Next theorem demonstrates the possibility to generate the Jerabek hyperbola of the trian-
gle ABC in a different way, using the trilinear polars and the Steiner lines of points P on its
circumcircle « (See Figure 2). The trilinear polars ¢ p of points P on the circumcircle  pass

Figure 2: Steiner line sp and trilinear polar tp of P € k

through the symmedian point K of the triangle ([4, p.126]) and the harmonic conjugate
T of the intersection 7" = (P A, BC). The Steiner lines s p pass through the orthocenter H
and the reflected S’ of P on BC'. They are parallel to the corresponding Wallace-Simson
line of P and carry the reflected points of P w.r. to the sides of the triangle ([1, p.54]).
Thus, as point P wanders on the circumcircle «, the correspoding lines {s p, tp} belong to
the pencils { H*, K*} of lines passing respectively through the points { H, K'}. The theo-
rem shows that the intersection points {S = (sp, BC),T = (tp, BC)} of these lines with
BC are homographically related, i.e. their line coordinates {x, 2’} satisfy a homographic

relation of the form b
’ axr
Ty d (1)
hence, by the Chasles-Steiner principle of generation of conics ([5, p.5], [3, p.72], [6, p.

259)), their intersection point X = (sp,tp) generates a conic.

Theorem 2.1. The geometric locus of intersections X = (sp,tp) of the Steiner line and the
trilinear polar w.r. to points P of the circumcircle x of the triangle ABC' is the Jerabek hyperbola
of the triangle.

Proof. Consider the system of coordinates whose z-axis is the side BC' and the y-axis
is the altitude AO (See Figure 3). In this system, the coordinates of the vertices are
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Figure 3: Steiner line sp and trilinear polar tp of P € k

{A(0,a), B(b,0),C(c,0)}. The coordinates of the orthocenter H and its reflection H' on
BC are then easily seen to be {H (0, —bc/a), H'(0,bc/a)} and the equation of the circum-
circle

a(z? +y*) —a(b+ ¢)x — (be + a*)y + abe = 0. (2)

Starting with S(s,0) on BC, the point P is found as intersection of the circle with line
H'S, which is the reflection of line S on BC.
s(a?cs + a®bs + b*c* — a®be) abc(s —b)(s — ¢)

P with p, = » P2 = - @
(p1,p2) p1 0252 + b2c2 b2 a?s? +b2c? ®)

By the definition of the trilinear polar, point T is the harmonic conjugate w.r. to (B, C) of
T" = (BC, AP), whose coordinates are easily seen to be 77(0,¢'), with t' = ap,/(a — p2).
The harmonic-conjugate relation gives

(b4 ¢) = 2bc

20+ (b+e) @

Replacing in this the values for ¢ and (p1,p2), we arive after a short calculation, at the
expression of ¢ in dependence of s

_ (@®(0* + A) + 2b%c*)s — be(c + b) (be + a?)

(c+b)(be + a?)s — be(b? + ¢ + 2a?) ()

This proves that points {S, 7'} are homographically related, hence X = (sp,tp) describes
aconic. Itis then easy to see that this conic passes through the vertices of the triangle and,
by the general properties of the Chasles-Steiner generation method, passes also from the
centers of the pencils { H*, K*} i.e. points { H, K'}. This identifies the conic with the rect-
angular hyperbola of Jerabek.

Remark. Notice that the determinant of the homographic relation (5) is readily seen to be
D = —be(a® + b*)(a® + ) (c — b)?,

implying that the conic is genuine, except in the case b = 0 or ¢ = 0, which corresponds
to aright triangle ABC'. These are precisely the cases in which the corresponding Jerabek
hyperbola degenerates in the product of two orthogonal lines: the hypotenuse and the
altitude to it.
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3 A projectivity

We will need to pass from the cartesian coordinate system of the preceding section to
trilinear coordinates and show the existence of a naturally defined projectivity, mapping
the circumcircle onto the Jerabek hyperbola. Now the meaning of symbols changes and
{a,b,c} denote the side lengths of the triangle ABC'. In addition we use the symbols
Sa = (1242 —a?)/2 = becos(A) and the analogous { Sz, Sc} resulting from S 4 by cyclic
permutations of the letters. In dealing with trilinear coordinates it is advisable to shorten
notation, especially for long expressions, using symbols like (ab,...) to denote triples
(ab, be, ca), resulting by cyclic permutations of the letters, and similarly sums ab+- - - = 0,
meaning ab+ bc+ca = 0. We use also (u,...) ~ (v,...) to express that the triples are non
zero multiples of each other, defining the same point in trilinears.
Jerabek’s hyperbola is described in trilinears (x, y, z) by the equation

(B2 — Sy s+ =0 6)
xr
It is readily seen that also
(b —cH)Sa+---=0 (7)
and from these two equations follows the relation of the triples
b ¢
2 2 ). [ Z_Z=
(= )Sa,...) = A (y Z> ®)

With this preparation, we consider now a point X (z, y, z) of the hyperbola, and the chord-
line it defines through the symmedian point K (a, b, ¢). The equation of this line for run-
ning trilinears (u, v, w) is

(cy —bz)u+---=0.
And the trilinear pole of this line, which is a point on the circumcircle, is
1
Py, Z) with " ) ~ 9
ot ) with @l ~ () ©

Using the fact that trilinears are defined modulo a multiplicative constant, we show that
this triple depends linearly on (x, y, z). In fact, the triple on the right side is a multiple of

(;((az—cx)(bx—ay),...>. (10)

72y222

Working with the first coordinate of this, we notice that

#(az_cx)(bx_a)_az—c:r bz — ay i_(ﬁ_f> b_ay. 1
229222 A Ty yz ’

The last expression is, by means of equation 8,

e o (boay L L2 62 1)

(x z) (y x> yz )\2(0 @*)Spla b)SCyz
€ 2 2y(,.2 12

= )\2xyz(c —a“)(a” —b%)SpSc

Working analogously with the other coordinates of the triple in 10, we see that this can
be expressed as a multiple of

((02 —a*)(a® - b*)SpScu, . .. )
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and by means of equation 9, the function P = ¢(X) can be expressed by

((SA — Sc)(Sa — Sp)
Sa

g(x,y,z) ~ ((c2 —a?)(a® - b*)SpScz, .. ) x,. > . (1)
This shows that the map P = ¢(X) is projective, hence its inverse X = f(P), which
coincides with the correspondence P — X of the preceding section, is a projective trans-
formation, mapping the circle onto the hyperbola. We formulate this as a theorem.

Theorem 3.1. The map, which to the point P of the circumcircle « of the triangle ABC, cor-
responds the intersection point X = (sp,¢p) of the Steiner line and the trilinear polar of P, is
the restriction on « of a projective transformation, mapping the circumcircle s onto the Jerabek
hyperbola of ABC.

4 X(74)

The triangle center X (74) is the fourth intersection point of the Jerabek hyperbola with
the circumcircle « of the triangle of reference ABC. It is also the isogonal conjugate of
the point at infinity of the Euler line of the triangle ([11]). The next few lemmata show
some other aspects of this triangle center, related to the projectivity f, established in the
previous section.

Figure 4: Points { P, X, X (74) } are collinear

Lemma4.1. All lines PX, for P on the circumcircle x and X = f(P), pass through X (74).
Proof. The trilinears of X (74) being given by ([11])

a a
(SASC+SASB—2SBSC""> ~ ((b2—02)2+a2(62—|—b2—2a2)"">’

it suffices to show that, for a point X (z, y, z) of Jerabek’s hyperbola, the determinant with
the above first row and the other two equal to

(z,9,2), and ((¢* —a*)(a® —b*)SpSca,...),

is zero. But this determinant is easily seen to evaluate to a multiple of equation 6, which
by assumption now is satisfied by (z,y, z).

Lemma 4.2. The Euler line of the triangle is the line send to infinity by f.
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Proof. Since the line at infinity in trilinears is ax + by + cz = 0, it suffices to show that the
two points of it {U = (—b,a,0),V = (—¢,0,a)} map via the inverse g of f onto the Euler
line, whose equation is given by

Sa(Sp — Sc)ax +--- = 0.
Using equation 11 we see that
g(U) ~ (=b(c* — a*)(a® — b*)SBS., a(a® —bv*)(b* — *)ScSa, 0),
which is readily verified to be on the Euler line. Analogous is the proof for V.

Lemma 4.3. The tangents {0, <} to the circumcircle « at its intersection points {D, E'} with
the Euler line of ABC map under f to the the asymptotes of the Jerabek hyperbola, which are
respectively parallel to {DX (74), EX(74)}.

Figure 5: Parallels to the asymptotes of Jerabek’s hyperbola

Proof. In fact, by lemma 4.2 points {D, E} map under f to points at infinity of the hy-
perbola lying respectively on lines {DX (74), EX(74)} (See Figure 5). In addition, the
tangents at {D, E'} of x map to corresponding tangents at the points at infinity, i.e. the
asymptotes of the hyperbola.

Figure 6. Points corresponding under the projectivity f

By lemma 4.1 all triangle centers P lying on the circumcircle define via f, points
X = f(P) lying on the Jerabek hyperbola, identified by the second intersection of line
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PX(74) with the hyperbola. Figure 6 shows a few of them, the verification of which can
be deduced from Kimberling’s great list [11] of triangle centers with a few additional
computations left as an exercise. Line £ = X (107)X(110) maps via f onto the Euler line,
point X (110) mapping onto the circumcenter O = X (3) and its other intersection point

with the circumcircle @ = ( . ) mapping onto the orthocenter H = X (4).

1
a(b?—c2)s%
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