GOLDEN SECTIONS AND ARCHIMEDEAN CIRCLES IN AN ARBELOS

NGUYEN NGOC GIANG and LE VIET AN

Abstract. We construct some golden ratios in the arbelos and Archimedean circles in this configuration.

Consider an arbelos formed by semi-circles \((O_1), (O_2),\) and \((O)\) of radii \(a, b,\) and \(a + b\). The semi-circles \((O_1)\) and \((O)\) meet at \(A, (O_2)\) and \((O)\) at \(B, (O_1)\) and \((O_2)\) at \(C\). Let \(CD\) be the divided line of the smaller semi-circles.

A segment \(PQ\) is called to be divided in the golden ratio by a point \(R\) if
\[
\frac{PQ}{PR} = \frac{PR}{RQ}
\]
In this case, the divided ratio is the golden ratio \(\phi := \frac{\sqrt{5}+1}{2}\), which satisfies \(\phi^2 = \phi + 1\).

Theorem 1. Let the segment \(AD\) and semi-circle \((O_1)\) meet again at \(E\), \(BD\) and \((O_2)\) at \(F, AF\) and \((O_2)\) at \(G, BE\) and \((O_1)\) at \(H\). If the rays \(CG\) and \(CH\) meet the semi-circle \((O)\) at \(I\) and \(J\) respectively, \(K\) and \(L\) are the incenter and \(C\)-excenter of triangle \(CIJ\), respectively, then \(K\) divides both the segments \(CD\) and \(LC\) in the golden ratios (see Figure 1).

Proof. Since \(DC\) is the altitude of right triangle \(ABD\) and the quadrilateral \(ACHE\) is concyclic,
\[
\angle BDC = \angle BAD = \angle CAE = \angle BHC.
\]
It follows that quadrilateral \(BCHD\) is concyclic.

Similarly, the quadrilateral \(ACGD\) is also concyclic.

Since \(AD\) touches the circles \((O_1)\) and \((O_2)\), \(DA \cdot DE = DC^2 = DB \cdot DF\) by the Power-of-a-point theorem and by the Intersecting-chords theorem, the quadrilateral \(ABFE\) is concyclic. Chasing angles, we have
\[
\angle GCD = \angle GAD = \angle FAE = \angle FBE = \angle DBH = \angle DCH.
\]
This means that \(CD\) is the internal angle bisector of \(\angle ICJ\), and \(K\) belongs to \(CD\).

Keywords and phrases: Golden ratio, Archimedean circles, Arbelos.
(2010)Mathematics Subject Classification:
Received: 15.03.2018. In revised form: 05.09.2018. Accepted: 13.09.2018.
Let J' be the reflection of J across AB. By symmetry, J' belongs to the circle (O) and $AJ = AJ'$.

It follows that $\angle JIA = \angle AIJ' = \angle AIC$. Hence, AI is the internal angle bisector of $\angle CIJ$ and K belongs to AI.

Similarly, K also belongs to BJ.

Since AJ and BJ are perpendicular, AJ is the external angle bisector of $\angle CJI$. We deduce that L belongs to AJ. Similarly, L also belongs to BI.

Then the quadrilaterals $ACIL$ and $BCJL$ are concyclic.

Let the lines AH and BG meet at M. Since CI and CJ are the anti-parallel of triangle ABL and they are perpendicular to BM and AM respectively. This means that M is the circumcenter of triangle ABL, and MO is perpendicular to AB.

Since KC touches (O_1),

$$\angle MAO = \angle HAC = \angle HCK = \angle GCD = \angle GAD = \angle FAD.$$

It follows that right triangles MAO and FAD are similar,

$$\frac{MO}{AO} = \frac{FD}{AD} \implies MO = AO \cdot \frac{DF}{DA}.$$
We have $AO = \frac{AB}{2} = a + b$, $AD = \sqrt{AB \cdot AC} = 2\sqrt{a(a+b)}$, $DC = \sqrt{CA \cdot CB} = 2\sqrt{ab}$, and

$$DF = \frac{DC^2}{DB} = \frac{CA \cdot CB}{\sqrt{BA \cdot BC}} = \frac{4ab}{2\sqrt{b(a+b)}} = \frac{2a\sqrt{b(a+b)}}{a+b}.$$

It follows that

$$MO = AO \cdot \frac{DF}{DA} = \sqrt{ab} = \frac{DC}{2}.$$

Let N be the orthogonal projection of M onto CD. Then N is the midpoint of CD and $CN = \sqrt{ab}$.

By the Pythagorean theorem,

$$NL^2 = ML^2 - MN^2 = (a+b)^2 + ab - (a-b)^2 = 5ab$$

$$\implies LC = LN + CN = (\sqrt{5} + 1)\sqrt{ab}.$$

Let K' be the reflection of K across AB. By symmetry, $CK = CK'$ and

$$\angle AK' B = \angle AKB = 180^\circ - \angle ALB.$$

It follows that quadrilateral $ALBK'$ is concyclic. By the Intersecting-chords theorem,

$$CK \cdot CL = CK' \cdot CL = CA \cdot CB$$

$$\implies CK = \frac{CA \cdot CB}{CL} = \frac{2a \cdot 2b}{(\sqrt{5} + 1)\sqrt{ab}} = (\sqrt{5} - 1)\sqrt{ab}.$$

Hence,

$$\frac{KC}{KD} = \frac{KC}{CD - KC} = \frac{\sqrt{5} - 1}{3 - \sqrt{5}} = \varphi,$$

and

$$\frac{KL}{KC} = \frac{LC - CK}{CK} = \frac{2}{\sqrt{5} - 1} = \varphi.$$

These prove that K divides both CD and LC in the golden ratios. \hfill \Box

Remark 2. It is easy to see that $CK = LD$ and D divides both segments LK and CL in the golden ratios.

The famous Archimedean twin circles associated in the arbelos have equal radii $t := \frac{ab}{a+b}$ (see [2] and [3]). Circles with radius t are called Archimedean and they are congruent to the Archimedean twin circles.

Theorem 3. If the perpendicular bisector of CD meets CG and CH at P and Q respectively, then the circle with diameter PQ is Archimedean (see Figure 2).
Proof. Since the right triangles CPN and AFD are similar, $CN = \sqrt{ab}$, $AD = 2\sqrt{a(a+b)}$ and $DF = \frac{2a\sqrt{a(a+b)}}{a+b}$, we deduce that $\frac{PN}{CN} = \frac{FD}{AD} \Rightarrow \frac{PN}{CN} = \frac{FD}{AD} = \frac{ab}{a+b} = t$.

Similarly, $QN = t$.

It follows that the circle with diameter PQ is Archimedean. \hfill \Box

Remark 4. It is easy to see that if the line perpendicular to CD at D meets CG and CH at R and S, respectively, then the circles with diameters DR and DS are Archimedean.

For two points P and Q in the plane, the circle with center P passing through Q is denoted by $P(Q)$.

Theorem 5. The circle $D(O)$ meets the perpendicular bisector of AB again at U. The semi-circle (O_1) and the segment AU meet at V, (O_2) and BU at W. If the common external tangent lines of two circles $A(V)$ and $B(W)$ meet CD at D_1 and D_2 such that D, D_1, D_2 are collinear in that order, then D divides D_2D_1 in the golden ratio.

Proof. Since the right triangles CAV and CBW are similar, $\frac{CA}{CB} = \frac{AV}{BW}$.

This means that C is the internal homothetic center of two circles $A(V)$, $B(W)$, and CV, CW are the common internal tangent lines of two circles $A(V)$ and $B(W)$.

Let the line BU and (O) meet again at B_1, and let the lines CV and CW meet two common external tangent lines of two circles $A(V)$ and $B(W)$ at $X, Y, Z,$ and T as show in the Figure 3.
Since XA and XB are the internal and external angle bisectors of $\angle CXY$, we get $\angle AXB = 90^\circ$. It follows that X belongs to circle (O). Similarly, the points Y, Z, T also belong to circle (O).

Note that CY and AB_1 are both perpendicular to BB_1, they are parallel, and since $AX = AT$ by the symmetry under the axis AB, YA bisects angle XTY. Chasing angles, we have $\angle AB_1X = \angle AYX = \angle AYT = \angle B_1AY$. It follows that XB_1 and AY are parallel.

Since AXB_1Y is the isosceles trapezoid with two bases AY and XB_1, $AB_1 = XY$.

Let H_1 be the orthogonal projection of D onto OU. Since H_1 is the midpoint of OU, we get

$$CD = OH_1 = \frac{OU}{2}.$$

Let us denote by $\alpha := \angle ACV$, then $\alpha = \angle BCW = \angle BAB_1 = \angle BCZ$. Since the right triangles BAB_1 and BVO are similar,

$$\frac{AB_1}{BB_1} = \frac{UO}{BO} = \frac{2CD}{BO} = \frac{4CD}{AB} \Longrightarrow AB_1 = 4DC \frac{BB_1}{BA} = 4DC \sin \alpha.$$
By the symmetry, XT and YZ are both perpendicular to AB. Let the line CD and circle (O) meet again at D_3, AB and XT at M_1, AB and YZ at M_2. By the Intersecting-chords theorem and symmetry,

$$AB_1^2 = 16CD^2 \cdot \sin^2 \alpha = 16CD \cdot CD_3 \cdot \sin \alpha \cdot \sin \alpha$$

$$= 16CX \cdot CZ \cdot \frac{M_1X \cdot M_2Z}{CX \cdot CZ} = 16M_1X \cdot M_2Z = 4XT \cdot YZ.$$

It follows that

$$XY^2 = 4XT \cdot YZ. \quad (1)$$

Note that D_1D_2, XT and YZ are pairwise parallel. By the Thales’ theorem,

$$\frac{D_1X}{D_1Y} = \frac{CX}{CZ} = \frac{XT}{YZ} \Rightarrow \frac{D_1X}{XY} = \frac{XT}{XT + YZ}, \quad (2)$$

and similarly,

$$\frac{D_1Y}{XY} = \frac{YZ}{XT + YZ}, \quad (3)$$

Comparing (1), (2) with (3), we obtain

$$D_1X \cdot D_1Y = \frac{4XT^2 \cdot YZ^2}{(XT + YZ)^2}. \quad (4)$$

Again, by the Thales’ theorem,

$$\frac{CD_1}{XT} + \frac{CD_1}{YZ} = \frac{XD_1}{XY} + \frac{YD_1}{YX} = \frac{XD_1 + D_1Y}{XY} = 1 \Rightarrow CD_1 = \frac{XT \cdot YZ}{XT + YZ},$$

and similarly,

$$CD_2 = \frac{XT \cdot YZ}{XT + YZ}. \quad (5)$$

It follows that

$$D_1D_2 = CD_1 + CD_2 = \frac{2XT \cdot YZ}{XT + YZ}. \quad (6)$$

And by the Intersecting-chords theorem and symmetry,

$$D_1X \cdot D_1Y = D_1D_1D_3 = D_1D_2D_2D. \quad (7)$$

From (4), (5) and (6), we deduce that $D_1D_2^2 = DD_1 \cdot DD_2$. This proves that D_1 divides D_2 in the golden ratio. \square

Theorem 6. The external tangent line of two semi-circles (O_1) and (O_2) meets the semi-circle (O) at P_1 and P_2 such that A, P_1, D, P_2 and B lie on the semi-circle (O) in that order. The line passing through P_1 perpendicular to CP_1 meets (O) at P_1 and Q_1. Let C_1 be the circumcenter of triangle CDQ_1. Circle C_1P_2 meets CD at E_1 and F_1 such that E_1, D, C and F_1 lie on CD in that order. Then D divides both the segments CE_1 and F_1C in the golden ratios.

Proof. (see Figure 4). Segment DA meets the semi-circle (O_1) at E, and segment DB meets the semi-circle (O_2) at F; let M_0 be the mid-point of CD.

We easily see that $CEDF$ is a rectangular. Hence M_0 is the mid-point of EF. Furthermore $\angle CEF = \angle CDB = \angle CAE$. It follows that EF is
tangent with \((O_1)\). Similarly, \(EF\) is also tangent with \((O_2)\). Hence \(EF\) is the external common tangent line of two semi-circles \((O_1)\) and \((O_2)\). Hence \(EF\) and \(PQ\) are coincident.

Since two semi-circles \((O)\) and \((O_1)\) are inner tangent at \(A\), the homothety \(H_{\frac{a}{a+b}}\), center \(A\), ratio \(\frac{a}{a+b}\) transforms \((O)\) into \((O_1)\). Under the homothety \(H_{\frac{a}{a+b}}\), points \(O\), \(D\) go into points \(O_1\), \(E\). Hence \(OD\) and \(O_1E\) are parallel. Since \(EF\) is tangent with \((O_1)\), \(O_1E\) is perpendicular to \(EF\). It follows that \(OD\) is perpendicular to \(P_1P_2\). This thing proves that \(OD\) is the perpendicular bisector of \(P_1P_2\). It follows \(DP_1 = DP_2\).

We have \(\angle DP_1P_2 = \angle DP_2P_1 = \angle DAP_1\). This thing proves that \(DP_1\) is tangent with the circumcircle of triangle \(AEP_1\). Applying the Power-of-a-point theorem, we have \(DP_1^2 = DA \cdot DE = DC^2\). It follows \(DP_1 = DC\). Since \(DP_1 = DP_2\), \(DC = DP_1 = DP_2\), it follows that

\[
\text{(7)} \quad D \text{ is the circumcenter of triangle } C_1 P_1 P_2.
\]

Let \(C'\) be the point symmetric to \(C\) across \(D\). Then \(DC = DP_1 = DC'\). It follows \(\angle CP_1C' = 90^\circ\). Hence three points \(C', P_1\) and \(Q_1\) are collinear. Applying the Power-of-a-point theorem with note that \(CC' = 2CD = 4\sqrt{ab}\)
and $CM_0 = \frac{1}{2} CD = \sqrt{ab}$, and $C'M_0 = C'C - CM_0 = 3\sqrt{ab}$, we have
\[C'P_1.C'Q_1 = C'O^2 - DO^2 = C'C^2 - DC^2 = 12ab = C'M_0.C'C. \]
Applying the Intersecting-chords theorem, we have quadrilateral $CM_0P_1Q_1$ being concyclic.
Hence $\angle CM_0Q_1 = \angle CP_1Q_1 = 90^\circ$. Hence Q_1M_0 is perpendicular to CD at the mid-point M_0 of CD so triangle CDQ_1 is isosceles at Q_1. Thus, C_1 belongs to Q_1M_0. Hence E_1 and F_1 are symmetric about point M_0 and $CF_1 = DE_1$.
On the other hand, since triangle CDQ_1 is isosceles at Q_1 and D is the circumcenter of triangle CP_1P_2, $\angle CDQ_2 = 2\angle CP_1P_2 = 2\angle CQ_1M_0 = \angle CQ_1D$. Hence DP_2 is tangent with the circumcircle of triangle CDQ_1.
Thus, DC_1 is perpendicular to DP_2.
Applying the Pythagorean theorem, we have
\[CD^2 = P_2D^2 = P_2C_1^2 - C_1D^2 = E_1C_1^2 - (C_1M_0^2 + M_0D^2) \
= (E_1C_1^2 - C_1M_0^2) - M_0D^2 \
= E_1M_0^2 - M_0D^2 \
= (E_1M_0 - M_0D) \cdot (E_1M_0 + M_0D) \
= E_1D \cdot (E_1M_0 + M_0C) \
= E_1D \cdot E_1C \
= E_1D (E_1D + CD). \]
It follows $CD^2 = E_1D^2 + E_1D.CD$. The above equality proves that $\frac{CD}{E_1D} = \frac{\sqrt{5+1}}{2} = \varphi$, is golden ratio.
Furthermore, since $CF_1 = DE_1$, it follows $\frac{DC}{F_1C} = \varphi$ and $\frac{DF_1}{DC} = \frac{\varphi + 1}{\varphi} = \varphi$. This means that point D divides F_1C in the golden ratio. \square
Since the figuration of theorem 6, we obtain a following result on the Archimedean circle.
Theorem 7. Line P_1Q_1 meets the circumcircle of triangle CDQ_1 at K_1. Let L_1 be the projection from K_1 onto P_1P_2. Then the circle with diameter K_1L_1 is Archimedean (see Figure 5).

Proof. Let H_0 be the point of intersection of DO and P_1P_2. Since (7), we have OD perpendicular to P_1P_2 at H_0, quadrilateral $CM_0P_1Q_1$ is concyclic.

Hence $\angle DK_1P_1 = 180^\circ - \angle DCQ_1 = \angle M_0P_1Q_1$. It follows that DK_1 and M_0P_1 are parallel. This means that $K_1L_1 = DH_0$.

On the other hand, the circle with diameter DH_0 is Archimedean (it is the circle (W_4) in [2], also the circle (A_3) in [3]).

Thus, the circle with diameter K_1L_1 is Archimedean. □

Theorem 8. The external tangent line of two semi-circles (O_1) and (O_2) meets the semi-circle (O) at P_1 and P_2, and meets CD at M_0. Line AM_0 meets DO_2 at A_0. Let O_0 be the point symmetric to O across D. Circle $O_0(A_0)$ meets DP_1 at X_1 and Y_1 such that P_1, X_1, D and Y_1 lie on DP_1 in that order. Then point X_1 divides DP_1 in the golden ratio, and point Y_1 divides P_1D in the golden ratio.

Proof. (see Figure 6). Let H_0 be the point of intersection of OD and P_1P_2. Then OD is perpendicular to P_1P_2 at H_0 and $DH_0 = 2t$.

![Figure 6](image-url)

Since O_2, M_0 are the midpoints of CB, CD, respectively, O_2M_0 is parallel to BD, from BD is perpendicular to AD, O_2M_0 is perpendicular to AD.
It follows that M_0 is the orthocenter of triangle ADO_2. Hence AA_0 is perpendicular to DO_2 at A_0.

Since $CD = 2\sqrt{ab}$ and $CO_2 = b$,

\[(8) \quad O_2A_0 + DA_0 = DO_2 = \sqrt{O_2C^2 + CD^2} = \sqrt{b^2 + 4ab}.
\]

Note that $AO_2 = 2a + b$, $AD = \sqrt{AC \cdot AB} = 2\sqrt{a(a + b)}$, we have

\[O_2A_0^2 - DA_0^2 = O_2A^2 - DA^2 = (2a + b)^2 - 4a(a + b) = b^2\]

\[\implies (O_2A_0 + DA_0)(O_2A_0 - DA_0) = b^2.
\]

Combining with (8), we obtain

\[(9) \quad O_2A_0 - DA_0 = \frac{b^2}{O_2A_0 + DA_0} = \frac{b^2}{\sqrt{b^2 + 4ab}}
\]

Since (8) and (9), it follows

\[(10) \quad DA_0 = \frac{2ab}{\sqrt{b^2 + 4ab}} \text{ và } O_2A_0 = \frac{b^2 + 2ab}{\sqrt{b^2 + 4ab}}.
\]

Let R_1 be the projection from O onto DO_2. Applying the Thales’ theorem with the note (10), we have $\frac{O_2R_1}{O_2A_0} = \frac{O_2O}{O_2A}$. Since $O_2O = a$,

\[O_2R_1 = O_2A_0 \frac{O_2O}{O_2A} = \frac{b^2 + 2ab}{\sqrt{b^2 + 4ab}} \cdot \frac{a}{2a + b} = \frac{ab}{\sqrt{b^2 + 4ab}}.
\]

Since (10) and (11), it follows $DA_0 = 2O_2R_1$. Let S_1 be the point symmetric to A_0 across D, and let T_1 be the point symmetric to D across O_1. Then

\[R_1S_1 = R_1D + DS_1 = DA_0 + (DO_2 - O_2R_1) = DA_0 - O_2R_1 + DO_2
\]

\[= O_2R_1 + DO_2 = O_2R_1 + O_2T_1
\]

\[= R_1T_1.
\]

It follows that OR_1 is the perpendicular bisector of S_1T_1. Hence $OS_1 = OT_1$.

Applying the property of rotation about center, we have $A_0O_0 = OS_1 = OT_1$, and BT_1 is parallel and equal to DC, so BT_1 is perpendicular to OB.

Applying the Pythagorean theorem, we have

\[(12) \quad O_0A_0 = OT_1 = \sqrt{T_1B^2 + BO^2} = \sqrt{4ab + (a + b)^2} = \sqrt{a^2 + b^2 + 6ab}.
\]

Since (7) we have $DP_1 = DC = 2\sqrt{ab}$. Hence

\[(13) \quad \cos \angle H_0DP_1 = \frac{DH_0}{DP_1} = \frac{2t}{DP_1} = \frac{2ab}{(a + b)2\sqrt{ab}} = \frac{\sqrt{ab}}{a + b}.
\]

Applying the Cosine’s law to triangle O_0DX_1, we have

\[O_0X_1^2 = O_0D^2 + X_1D^2 - 2O_0.D.X_1.D \cdot \cos \angle O_0DX_1
\]

\[= O_0D^2 + X_1D^2 + 2O_0.D.X_1.D \cdot \cos \angle H_0DP_1
\]

\[= (a + b)^2 + X_1D^2 + 2(a + b).X_1.D \cdot \cos \angle H_0DP_1.
\]
Note that $O_0X_1 = O_0A_0$. Combining with (12) and (13), we deduce that
\[
a^2 + b^2 + 6ab = (a + b)^2 + X_1D^2 + 2(a + b).X_1D\frac{\sqrt{ab}}{a + b}
\]
\[
= (a + b)^2 + X_1D^2 + 2\sqrt{ab}.X_1D.
\]
It follows $X_1D^2 + 2\sqrt{ab}X_1D - 4ab = 0$. From this, we get
\[
X_1D = (-1 + \sqrt{5})\sqrt{ab}.
\]
(14)

Since (14), it follows
\[
X_1P_1 = DP_1 - X_1D = 2\sqrt{ab} - (-1 + \sqrt{5})\sqrt{ab} = (3 - \sqrt{5})\sqrt{ab}.
\]
(15)

Since (14) and (15), it follows
\[
\frac{X_1D}{X_1P_1} = \frac{(-1 + \sqrt{5})\sqrt{ab}}{(3 - \sqrt{5})\sqrt{ab}} = \frac{1 + \sqrt{5}}{2} = \varphi.
\]

This means that X_1 divides DP_1 in the golden ratio.

On the other hand, applying the Power-of-a-point theorem with the note that $O_0D = OD = a + b$ and (12), (14), we have
\[
DX_1DY_1 = O_0A_0^2 - DO_0^2 = 4ab \implies Y_1D = \frac{4ab}{DX_1} = (1 + \sqrt{5})\sqrt{ab}.
\]

It follows
\[
\frac{Y_1D}{DP_1} = \frac{(1 + \sqrt{5})\sqrt{ab}}{2\sqrt{ab}} = \varphi \quad \text{and} \quad \frac{Y_1P_1}{Y_1D} = \frac{\varphi + 1}{\varphi} = \varphi.
\]

Hence point Y_1 divides segment P_1D in the golden ratio. □

From the configuration of theorem 8, we obtain a pair of Archimedean circles as follows

Theorem 9. The circle $O_0(A_0)$ meets the semi-circle (O) at U_1 and U_2. Then the circles that are tangent with P_1P_2 and their centers are U_1 and U_2, respectively are Archimedean (see figure 7).

Proof. Let V_1 be the projection from U_1 onto OO_0.

We have
\[
O_0V_1 + OV_1 = OO_0 = 2OD = 2(a + b).
\]
(16)

Note that $U_1O_0 = O_0A_0 = \sqrt{a^2 + b^2 + 6ab}$ (since (12)), $DH_0 = 2t$ and $U_1O = a + b$. We have
\[
V_1O_0^2 - V_1O^2 = U_1O_0^2 - U_1O^2 = a^2 + b^2 + 6ab - (a + b)^2 = 4ab.
\]

It follows $OO_0(O_0V_1 - OV_1) = 4ab$. From this, we get
\[
O_0V_1 - OV_1 = \frac{4ab}{OO_0} = \frac{4ab}{2(a + b)} = \frac{2ab}{a + b} = 2t.
\]
(17)

Since (16) and (17), it follows
\[
O_0V_1 = a + b + t \quad \text{and} \quad OV_1 = a + b - t.
\]

Hence
\[
V_1H_0 = |OV_1 - H_0O| = |a + b - t - (a + b)| = t.
\]
This proves that the distance from U_1 to P_1P_2 is equal to t.

Similarly, the distance from U_2 to P_1P_2 is also equal to t.

It follows that the circles are tangent with P_1P_2 and their centers are U_1 and U_2, respectively such that their radii are equal to t, so they are Archimedean. The theorem is proved. □

References

BANKING UNIVERSITY OF HO CHI MINH CITY
36 TON THAT DAM, district 1, HO CHI MINH CITY, VIETNAM.

E-mail address: nguyenngoegiang.net@gmail.com

PHU VANG, THUA THIEN HUE, VIETNAM.

E-mail address: levietan.spt@gmail.com