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AN INEQUALITY RELATED TO THE LENGTHS
AND AREA OF A CONVEX QUADRILATERAL

LEONARD MIHAI GIUGIUC, DAO THANH OAI and KADIR ALTINTAS

Abstract. In this paper we give an inequality related to the lengths and the area of a convex

quadrilateral and its proof.

1. Introduction

There are many famous inequalities related to the lengths and area of a triangle, for examples

with a triangle we have Pedoe�s inequality [9], Weitzenbock�s inequality [10], Ono�s inequality

[8], Blundon�s inequality [3]. In a quadrilateral we have many important inequalities, such as

Yun�s inequality [6], Josefsson�s inequality [6],[7]; some other inequalities of a quadrilateral you

can see in [4], [1], [2]. In this paper we give a nice inequality related to the lengths and area of

a convex quadrilateral in theorem 1.1 as follows:

Theorem 1.1. Let a; b; c; d be the lengths of the sides of a convex quadriateral ABCD with the

area S, the following inequality hold:

(1)
1

3 +
p
3
(ab+ ac+ ad+ bc+ bd+ cd)� 1

2(
p
3 + 1)2

(a2 + b2 + c2 + d2) � S

Equality hold if only if ABCD is a square.

To prove Theorem 1.1, �rst we give a stronger inequality as follows:

Theorem 1.2. If a; b; c and d be the lengths of the sides of a convex quadrilateral ABCD, the

following inequality hold:

(2) 2(a+ b+ c+ d)2 �
�
5�

p
3
� �
a2 + b2 + c2 + d2

�
+ 4
p
3
�p
3 + 1

�p
abcd

Equality hold if only if a = b = c = d.

� � � � � � � � � � � � �
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Proof.

Figure 1

In order to prove (2), we need to establish few things �rst. Since ABCD is the convex quadri-

lateral, we have 0 < a; b; c; d < a+b+c+d
2 : Because both members of (1) are homogenous of second

degree, we may assume a+ b+ c+ d = 4. Thus, 0 < a; b; c; d < 2. By Maclaurin�s inequality we

have:

ab+ ac+ ad+ bc+ bd+ cd

6
�
�
a+ b+ c+ d

4

�2
i.e.

ab+ ac+ ad+ bc+ bd+ cd � 6:

So that there exist t 2 [0; 1) such that:

(3) ab+ ac+ ad+ bc+ bd+ cd = 6(1� t2):

From (3)

a2 + b2 + c2 + d2 = (a+ b+ c+ d)2 � 2(ab+ ac+ ad+ bc+ bd+ cd)

= 16� 12(1� t2) = 4(1 + 3t2):

Thus (1) is equivalent to

8 �
�
5�

p
3
� �
1 + 3t2

�
+
p
3
�p
3 + 1

�p
abcd,

p
3(
p
3 + 1)� 3(5�

p
3)t2 �

p
3
�p
3 + 1

�p
abcd,

(4) 1�
p
3
�
3
p
3� 4

�
t2 �

p
abcd:

De�ne the polynomial P : (0;1)! R as P (x) = (x�a)(x� b)(x� c)(x�d);8x > 0: By Viete�s
theorem combined with (3), we have: P (x) = x4 � 4x3 + 6(1 � t2)x2 � 4sx + p;8x > 0, where
4s = abc+ abd+ acd+ bcd and p = abcd:
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Lemma 1.1. Let a; b; c and d be the lengths of the sides of a convex quadrilateral ABCD with

perimeter equal to 4 then

(5) a2 + b2 + c2 + d2 < 8:

Proof. Denote u = a � 1, v = b � 1, w = c � 1 and z = d � 1. Then �1 < u; v; w; z < 1 and
u+v+w+z = 0. The inequality (5) is equivalent with u2+v2+w2+z2 < 4, which is true since

0 � u2; v2; w2; z2 < 1. This completes the proof of Lemma 1.1. Note that Lemma 1.1 combined
to (4) gives us that t 2 [0; 1p

3
):

Lemma 1.2. If 0 � t < 1
3 then p � (1� t)

3(1 + 3t):

Proof. Consider the function f : (0;1) ! R; f(x) = P (x)
x . Since f admits four positive roots,

the from Rolle�s theorem, f 0 admits at least 3 positive roots. But

f 0(x) =
3x4 � 8x3 + 6(1� t2)x2 � p)

x2
; 8x > 0:

From the obove consideration, the polynomial g(x) = 3x4�8x3+6(1� t2)x2�p admits at least
three roots in (0;1). We have:

g0(x) = 12x
�
x2 � 2x+ (1� t2)

�
;

thus the critical points of g are 1� t � 1+ t and f . We form the function g the Rolle�s sequence

0+ < 1 � t � 1 + t < 1. Since f(0+) = �1 < 0; f(1) = +1 > 0 and f has three positive

roots, the from the consequence of Rolle�s theorem, we obtain

f(1� t) � 0) p � (1� t)3(1 + 3t):

This completes the proof of Lemma 1.2.

Lemma 1.3. Let a; b; c and d be real numbers situated in the interval [0; 2] such that a+b+c+d =

4 and ab+ ac+ ad+ bc+ bd+ cd = 6(1� t2). If 13 � t �
1p
3
then:

(6) p �
4
�
2�

p
2(9t2 � 1)

��
1 +

p
2 (9t2 � 1)

�
27

:

Moreover p =
4
�
2�
p
2(9t2�1)

��
1+
p
2(9t2�1)

�
27 i¤ (a; b; c; d) =

�
2;
2�
p
2(9t2�1)
3 ;

2�
p
2(9t2�1)
3 ;

2+
p
2(9t2�1)
3

�
and permutations.

Proof. Let k be a real number with 0 < k < 2
3 . We consider the real numbers a; b; c and d

situated in the interval [0; 2] such that a+ b+ c+ d = 4 and a2+ b2+ c2+ d2 = 2(3k2� 4k+4).
Then,

abcd � 4k2(1� k):

First let�s remark that if (a; b; c; d) = (k; k; 2� 2k; 2) and their permutations, then

a+ b+ c+ d = 4; a2 + b2 + c2 + d2 = 2(3k2 � 4k + 4)
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and abcd = 4k2(1 � k). Let �; � be positive real numbers with � > �. We consider the non

negative real numbers u; v; w and t such u+v+w+ t = 2�+� and u2+v2+w2+ t2 = 2�2+�2.

Then

uvw + uvt+ uwt+ vwt � �2�:

The result is known, hence we don�t need to prove it here.

Back to the problem. Putting � = 2�k, � = 2k , u = 2�a, v = 2�b, w = 2�c and t = 2�d
we get: � > � > 0; u; v; w; t � 0; u + v + w + t = 2� + � and u2 + v2 + w2 + t2 = 2�2 + �2:

Hence according to the lemma,

uvw + uvt+ uwt+ vwt � �2� ) abc+ abd+ acd+ bcd � 2k(�k2 � 2k + 4):

We assume by absurd that there exist a; b; c; d 2 [0; 2] with a+b+c+d = 4 and a2+b2+c2+d2 =
2(3k2 � 4k + 4) such that abcd > 4k2(1� k):
De�ne the polynomials f; g : [0; 2] ! R, as f(x) = (x � a)(x � b)(x � c)(x � d) and g(x) =

(x� k)2 (x� 2(1� k)) (x� 2), 8x 2 [0; 2]. Then

f(x) = x4 � 4x3 + (�3k2 + 4k + 4)x2 �mx+ p;8x 2 [0; 2]

where m = abc+ abd+ acd+ bcd, and p = abcd and

g(x) = x4 � 3x3 + (�3k2 + 4k + 4)x2 � 2k(�k2 � 2k + 4)x+ 4k2(1� k);8x 2 [0; 2]:

Thus, f(x) � g(x) =
�
2k(�k2 � 2k + 4)�m

�
x + p � 4k2(1 � k) > 0, 8x 2 [0; 2]. Hence, if


 fa; b; c; dg, then f(
)� g(
) > 0 ) g(
) < 0.

But g(x) < 0 if and only if x 2 (2(1� k); 2) ) fa; b; c; dg � (2(1� k); 2). Consequently, via
Rolle�s theorem, the roots of f 0 are contained in the interval (2(1� k); 2). Let y1; y2 and y3 be
those roots. Then

f 0(x) = 4(x� y1)(x� y2)(x� y3) � 0;

which is false, because k < 2(1�k) < y1; y2; y3. So that our assumption was false. In conclusion,
abcd � 4k2(1� k). Back to the lemma�s 1.3 proof.
If 13 < t < 1p

3
, let�s remark �rst that the exists k 2 (0; 23) such that a

2 + b2 + c2 + d2 =

2(3k2 � 4k + 4).
Indeed, solving the quadratic 2(3k2�4k+4) = 4(1+3t2), we choose the root k = 2�

p
2(9t2�1)
3

and clearly 0 < k < 2
3 . Hence

abcd �
4
�
2�

p
2(9t2 � 1)

�2 �
1 + 2

p
2(9t2 � 1)

�
27

:

If t = 1
3 , then, by the proof of the lemma 1.2, abcd � (1� t)

3(1+3t). If t = 1p
3
, the only choices

we have are (a; b; c; d) = (2; 2; 0; 0) and permutations and clearly,

abcd �
4
�
2�

p
2(9t2 � 1)

�2 �
1 + 2

p
2(9t2 � 1)

�
27

This completes the proof of Lemma 1.3.
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We are now ready to prove the inequality (2):

Case 1: 0 � t � 1
3 : By the lemma 2 we have: (1� t)

3(1 + 3t) � p, hence su¢ ce it to show:

1�
p
3(3
p
3� 4)t2 �

p
(1� t)3(1 + 3t)

t2(1� 3t)
�
2
p
3� 3� (11� 6

p
3)t
�
� 0

which is true since 0 � t < 1
3 and

2
p
3�3

11�6
p
3
> 1

3 :We deduce from the above proof that in this case

equality holds at t = 0, a = b = c = d:

Case 2: 1
3 � t �

1p
3
:

The fact that 0 < a; b; c; d < 2 combined with the Lemma 1.3 give us that:

4
�
2�

p
2(9t2 � 1)

�2 �
1 +

p
2(9t2 � 1)

�
27

� p

Su¢ ce it to show that:

1�
p
3(3
p
3� 4)t2 �

vuut4
�
2�

p
2(9t2 � 1)

�2 �
1 +

p
2(9t2 � 1)

�
27

Which is true after strightward calculations. This completes the proof of Theorem 1.2.

2. PROOF OF THE THEOREM 1.1

By famous Brahmagupta�s formula and Bretschneider�s formula (see [5]), we know that among

all convex quadrilaterals ABCD with the lengths of the side a; b; c and d then the cyclic ones

have the lagest area. So we only need to prove the Theorem 1.1 with ABCD is the convex cyclic

quadrilateral.

By the Brahmagupta�s formula we have that the area of convex cyclic quadrilateral ABCD

is S =
p
(s� a)(s� b)(s� c)(s� d) where s = a+b+c+d

2 . So the inequality (1),
4p
3
(ab+ac+ad+bc+bd+cd) � (

p
3�1)(a2+b2+c2+d2)+4(

p
3+1)

p
(s� a)(s� b)(s� c)(s� d),

(7) 2(a+ b+ c+ d)2 � (5�
p
3)(a2+ b2+ c2+ d2)+ 4

p
3(
p
3+ 1)

p
(s� a)(s� b)(s� c)(s� d)

As above, without loss of generality, we may assume that a+ b+ c+ d = 4. Denote x = 2� a,
y = 2 � b; z = 2 � c and w = 2 � d. Then 0 < x; y; z; w < 2. Moreover, a = 2 � x, b = 2 � y,
c = 2� z, d = 2� w and x+ y + z + w = 8� (a+ b+ c+ d) = 4 so that x; y; z and w are the
lengths of the sides of a covex quadrilateral XY ZW .

Noted that a2 + b2 + c2 + d2 = (2� x)2 + (2� y)2 + (2� z)2 + (2�w)2 = 16� 4(x+ y + z +
w) + x2 + y2 + z2 + w2 = x2 + y2 + z2 + w2. Thus, (7) be come:

(8) 2(x+ y + z + w)2 � (5�
p
3)(x2 + y2 + z2 + w2) + 4

p
3(
p
3 + 1)

p
xyzw

Equality in (8) holds if only if a = b = c = d and ABCD is a cyclic quadrilateral. The inequality

(8) is true according to the (2). This complete the proof of Theorem 1.1.
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