NEW APPLICATIONS OF METHOD OF COMPLEX NUMBERS IN THE GEOMETRY OF CYCLIC QUADRILATERALS

DAVID FRAIVERT

Abstract

Any cyclic quadrilateral whose sides are not parallel can define a triangle with one vertex at the point of intersection of the quadrilateral's diagonals and the other vertices at the points of intersection of the continuations of the quadrilateral's pairs of opposite sides. Using a cyclic quadrilateral and this triangle, the following four circles may be defined: the circumcircle of the quadrilateral, two circles with diameters that are the sides of the triangle that issue from the point of intersection of the quadrilaterals diagonals, and the Euler circle of the triangle. In the current paper, we shall prove four properties that relate the quadrilateral, the triangle and these circles. We shall show that the two circles whose diameters are the sides of the triangle are perpendicular to the circumcircle of the quadrilateral. We shall prove equalities that relate the angle between the midlines in the quadrilateral with other angles. We shall show that the point of intersection of the midlines of the quadrilateral belongs to the Euler's circle of the triangle defined using the quadrilateral. In proving these properties we shall make use of the method of complex numbers in plane geometry, thereby illustrating different uses of this method of proof.

1. Introduction

The method of complex numbers in plane geometry is founded on the following principles:
(1) We choose a Cartesian system of coordinates in the plane. Any point, M, that belongs to the plane is given a pair of real coordinates (x, y) or a complex coordinate $m=x+y i$.
The number $\bar{m}=x-y i$ is the conjugate of m, and is the complex coordinate of point M^{\prime}, which is symmetrical to point M relative to the real axis of the system.

[^0](2010)Mathematics Subject Classification: 51M04, 51M99

Received: 2.04.2017. In revised form: 1.11.2017. Accepted: 12.12.2017.
(2) By using the coordinate m and the conjugate number \bar{m} together, we can describe the properties of point M. For example: the product $m \cdot \bar{m}$ represents the square of the distance of point M from the origin, the equality $m=\bar{m}$ holds when m is a real number.
(3) There exist formulas that relate points that are located on geometrical shapes or which express properties of the shapes. These formulas include the coordinates of points (in the form of single letters without separation into real and imaginary parts) and the conjugate of the coordinates (also in the form of single letters).
(4) Most of the formulas can be simplified by using points that belong to a unit circle (a circle whose center lies at the origin and whose radius equals 1).
Some isolated formulas of the type described may be found in [7], [8], [10]; a system of formulas in can be found, for example, in [9, pp.154-181], [1]. Utilizing the method of complex numbers in plane geometry allows us to solve geometrical problems algebraically through defined formulas and technical calculations with polynomials.
The data and requirement of the problem determine which formulas of the method of complex numbers are suitable for solving this problem.
When a non-standard problem in geometry is given, its solution using the "ordinary" method (geometrical proof) often requires creativity and the ability to carry out a prolonged search for the gist of the solution; using the method of complex numbers in plane geometry allows transforming the problem into a standard algebraic.
The main shortcoming of the complex number method is that, during the process of solution, a stage may be reached where expressions are obtained that are so huge that it is difficult to simplify them manually. At this stage, we can make use of computer software such as Mathematica or MATLAB.
To prove the properties set forth in this paper, we shall make use of the method of complex numbers in the geometry of the plane. For proving properties 1 and 4, we shall make simplify manually; for proving properties 2 and 3 , we shall make use of Mathematica software.

2. Properties that relate a Cyclic quadrilateral to a triangle defined by it and to circles defined using the triangle

General data for all properties.

Let $A B C D$ be a quadrilateral inscribed in circle ε (O is the center of ε), in which:
E is the point of intersection of the diagonals;
F is the point of intersection of the continuations of sides $B C$ and $A D$;
G is the point of intersection of the continuations of sides $A B$ and $C D$;
T is the point of intersection of midlines $P Q$ and $V W$ (see Figure 1);
O_{1} is the middle of segment $E F$ and O_{2} is the middle of segment $E G$.

Figure 1

Property 1.

Additional data:
$\omega_{E F}$ is a circle whose diameter is segment $E F$,
$\omega_{E G}$ is a circle whose diameter is segment $E G$ (see Figure 2),
H is the other point of intersection of circles $\omega_{E F}$ and $\omega_{E G}$ (in addition to point E). Then:
(a) circles $\omega_{E F}$ and $\omega_{E G}$ are each perpendicular to circumcircle ε of the quadrilateral;
(b) point H belongs to the straight line $F G$.

Figure 2

Proof.

(a) To prove that circles ε and $\omega_{E F}$ are perpendicular, it is sufficient to verify that the equality

$$
\begin{equation*}
\left|O O_{1}\right|^{2}=r_{\varepsilon}^{2}+r_{\omega_{E F}}^{2} \tag{1}
\end{equation*}
$$

is satisfied, where r_{ε} is the radius of circle ε and $r_{\omega_{E F}}$ is the radius of circle $\omega_{E F}$.
We shall make use of the method of complex numbers in plane geometry.
We choose a system of coordinates such that circle ε is the unit circle: in other words, point O is the origin of the system and $r_{\varepsilon}=1$. In this system, the equation of the circle ε is, $z \cdot \bar{z}=1$, where z and \bar{z} are a complex coordinate and its conjugate of an arbitrary point that is located on circle ε.
We denote the complex coordinates of points A, B, C and D by a, b, c and d, respectively. These points are located on the unit circle. Thus, the following relation holds between the coordinates of the points and their conjugates: $\bar{a}=\frac{1}{a}, \bar{b}=\frac{1}{b}, \bar{c}=\frac{1}{c}$ and $\bar{d}=\frac{1}{d}$.
Since segment $O_{1} E$ is the radius of circle $\omega_{E F}$, we can write down $r_{\omega_{E F}}=\left|O_{1} E\right|$. We substitute the values of r_{ε} and $r_{\omega_{E F}}$ in equality (1) to obtain:

$$
\begin{equation*}
\left|O O_{1}\right|^{2}=1+\left|O_{1} E\right|^{2} \tag{2}
\end{equation*}
$$

Using the complex coordinates of points E, O_{1}, and O (and their conjugates), equality (2) can be written as:

$$
\left(o_{1}-0\right)\left(\bar{o}_{1}-\overline{0}\right)=1+\left(e-o_{1}\right)\left(\bar{e}-\bar{o}_{1}\right)
$$

Point O_{1} is the middle of segment $E F$, therefore for coordinate o_{1} and number \bar{o}_{1} there holds: $o_{1}=\frac{1}{2}(f+e)$ and $\bar{o}_{1}=\frac{1}{2}(\bar{f}+\bar{e})$, as well as $\overline{0}=0$. Therefore, the last equality can be transformed into:

$$
\frac{1}{4}(f+e)(\bar{f}+\bar{e})=1+\frac{1}{4}(e-f)(\bar{e}-\bar{f})
$$

and finally we obtain:

$$
\begin{equation*}
f \bar{e}+e \bar{f}=2 \tag{3}
\end{equation*}
$$

Now, we express the complex coordinates of points E and F (and their conjugates) using the coordinates of points A, B, C, and D.
To this end, we shall make use of the following formulas:
Let $K(k), L(l), M(m)$, and $N(n)$ be four points that belong to the unit circle, and let $S(s)$ be the point of intersection of the straight lines that pass through the chords $K L$ and $M N$ in the unit circle.
For the complex coordinate of S and its conjugate, there holds:

$$
\begin{equation*}
\bar{s}=\frac{k+l-m-n}{k l-m n} \quad \text { and } \quad s=\frac{l m n+k m n-k l n-k l m}{m n-k l} \tag{4}
\end{equation*}
$$

Using the formulas (4), the complex coordinates (and their conjugates) of points E and F can be expressed as:

$$
\begin{align*}
& \bar{e}=\frac{a+c-b-d}{a c-b d} \quad \text { and } \quad e=\frac{b c d+a b d-a c d-a b c}{b d-a c} \tag{5}\\
& \bar{f}=\frac{a+d-b-c}{a d-b c} \quad \text { and } \quad f=\frac{b c d+a b c-a c d-a b d}{b c-a d} \tag{6}
\end{align*}
$$

Let us calculate the left-hand side of (3). We substitute in it expressions (5) and (6), and obtain:
$f \bar{e}+e \bar{f}=$
$=\frac{b c d+a b c-a c d-a b d}{b c-a d} \cdot \frac{a+c-b-d}{a c-b d}+\frac{b c d+a b d-a c d-a b c}{b d-a c} \cdot \frac{a+d-b-c}{a d-b c}$.
After adding and multiplying the algebraic fractions, and simplifying the numerator of the obtained fraction, we obtain the following:
$\frac{-2 b^{2} c d+2 a b c^{2}-2 a^{2} c d+2 a b d^{2}}{(b c-a d)(a c-b d)}=2 \cdot \frac{-b^{2} c d+a b c^{2}-a^{2} c d+a b d^{2}}{a b c^{2}-b^{2} c d-a^{2} c d+a b d^{2}}=2 \cdot 1=2$.
Since we have shown that equality (3) holds, it follows that equalities (2) and (1) also hold. In other words, circles ε and $\omega_{E F}$ are perpendicular. The perpendicularity of circles ε and $\omega_{E G}$ is proven in a similar manner.
(b) The claim that H belongs to straight line $F G$ follows from the fact that angles $\measuredangle E H F$ and $\measuredangle E H G$ are both inscribed angles resting on the diameter of the circle and therefore each one measures 90°. Therefore $\measuredangle F H G$ is a straight angle.
Since $H \in F G$ and $E H \perp F G$, the following two properties hold:
(i) Segment $E H$ is an altitude to side $F G$ in triangle $\triangle E F G$.
(ii) Inversion relative to circle ε transforms each of the circles $\omega_{E F}$ and $\omega_{E G}$ into itself (since they are perpendicular to ε), and hence it transforms their points of intersection E and H one into the other.

Property 2.

The sum of two angles one of which is the angle between the midlines $P Q$ and $V W$, and the other is the angle of triangle EFG whose vertex at point E equals 180° (in Figure 3, $\measuredangle P T V+\measuredangle F E G=180^{\circ}$).

Figure 3

Proof. In the first phase, we prove that straight lines $P Q$ and $V W$ pass through points O_{1} and O_{2}, respectively.
We use the following property of the complete quadrilateral (see [6, Section 194]: "in the complete quadrilateral, the middles of the diagonals are on the same straight line".
In our case, in the complete quadrilateral $A F B E C D$ (see Fig. 3), points P, Q and O_{1} are the middles of diagonals $A B, C D$ and $E F$, respectively. Therefore, they are on the same straight line.
Similarly, in the complete quadrilateral $B G C E D A$ the points V, W and O_{2} are the middles of the diagonals $B C, A D$, and $E G$, respectively, and therefore they lie on the same straight line.
We now prove that the four points, O_{1}, T, O_{2}, and H, lie on the same circle.
Again we employ the method of complex numbers. We again choose a system where circle ε is the unit circle, and express the complex coordinates of points G, O_{1}, T, O_{2}, and H (and their conjugates) using the coordinates of points A, B, C, and D.
Using the formulas (4) which were presented in the proof of Property 1, the complex coordinates (and their conjugates) of point G can be expressed as:

$$
\begin{equation*}
\bar{g}=\frac{c+d-a-b}{c d-a b} \quad \text { and } \quad g=\frac{a b d+a b c-b c d-a c d}{a b-c d} \tag{7}
\end{equation*}
$$

The points P and Q are the middles of sides $A B$ and $C D$.
Therefore, $p=\frac{1}{2}(a+b)$ and $q=\frac{1}{2}(c+d)$.
The point T is the middle of segment $P Q$. Therefore, the coordinate of T (and its conjugate) can be expressed as:

$$
\begin{gather*}
t=\frac{1}{2}(p+q)=\frac{1}{4}(a+b+c+d) \quad \text { and } \\
\bar{t}=\frac{1}{4} \frac{b c d+a c d+a b d+a b c}{(a+b+c+d)}=\frac{b a b c d}{} \tag{8}
\end{gather*}
$$

The complex coordinates of points O_{1} and O_{2} (which are the middles of segments $E F$ and $E G$), and their conjugates shall be:

$$
\begin{align*}
o_{1} & =\frac{1}{2}(f+e) & \text { and } & \bar{o}_{1} \tag{9}
\end{align*}=\frac{1}{2}(\bar{f}+\bar{e})
$$

Points E and H are the points of intersection of circles $\omega_{E F}$ and $\omega_{E G}$, which are perpendicular to circle ε. Inversion relative to circle ε transforms each of the circles $\omega_{E F}$ and $\omega_{E G}$ into itself. Therefore, it transforms their points of intersection E and H one into the other (see for example [2, chapter 5 , paragraph 5]), and therefore, the complex coordinates of points E and H and their conjugates satisfy the following relation (see [10, paragraph 13]):

$$
\begin{equation*}
h=\frac{1}{\bar{e}} \quad \text { and } \quad \bar{h}=\frac{1}{e} \tag{11}
\end{equation*}
$$

We use the following property of four points which belong to the same circle (see [10, paragraph 7]): Points $K(k), L(l), M(m)$ and $N(n)$ belong to the same circle if and only if the complex coordinates of these points and their
conjugates satisfy the following relation:

$$
\frac{k-m}{l-m}: \frac{k-n}{l-n}=\frac{\bar{k}-\bar{m}}{\bar{l}-\bar{m}}: \frac{\bar{k}-\bar{n}}{\bar{l}-\bar{n}} .
$$

Therefore, in order to prove that points O_{1}, T, O_{2}, and H lie on the same circle, it is enough to show that the following relation is satisfied:

$$
\begin{equation*}
\frac{o_{1}-t}{o_{2}-t}: \frac{o_{1}-h}{o_{2}-h}=\frac{\bar{o}_{1}-\bar{t}}{\bar{o}_{2}-\bar{t}}: \frac{\bar{o}_{1}-\bar{h}}{\bar{o}_{2}-\bar{h}} \tag{12}
\end{equation*}
$$

By substituting the expressions for the letters $t, \bar{t}, o_{1}, \bar{o}_{1}, o_{2}, \bar{o}_{2}, h$, and \bar{h} obtained above into (12), we get:

$$
\left.\begin{array}{l}
\left(\frac{\frac{\left(\frac{b c d+a b c-a c d-a b d}{b c-a d}\right)+\left(\frac{b c d+a b d-a c d-a b c}{b d-a c}\right)}{2}-\left(\frac{a+b+c+d}{4}\right)}{\left(\frac{a b d+a b c-b c d-a c d}{a b-c d}\right)+\left(\frac{b c d+a b d-a c d-a b c}{b d-a c}\right)}-\left(\frac{a+b+c+d}{4}\right)\right.
\end{array}\right) \times
$$

After simplifying the two sides of the equality (for this, we used Mathematica ${ }^{\circledR}$ software), we obtain the same expression,
$-\frac{(b-c)(a-d)\left(a^{2} c d+b^{2} c d+a b\left(c^{2}-4 c d+d^{2}\right)\right)}{(a-b)(c-d)\left(a^{2} b c+a\left(b^{2}-4 b c+c^{2}\right) d+b c d^{2}\right)}$, on both sides.
Therefore, equality (12) holds, and points O_{1}, T, O_{2} and H lie on the same circle.
Hence, it follows that quadrilateral $O_{1} T O_{2} \mathrm{H}$ is inscribable (see Fig. 4), and therefore the opposite angles in this quadrilateral satisfy:
$\measuredangle O_{1} T O_{2}+\measuredangle O_{1} H O_{2}=180^{\circ}$ or $\measuredangle P T V+\measuredangle O_{1} H O_{2}=180^{\circ}$ (because
$\left.\measuredangle O_{1} T O_{2}=\measuredangle P T V\right)$.

We now prove that angles $\measuredangle O_{1} H O_{2}$ and $\measuredangle O_{1} E O_{2}$ are equal.
By symmetry transformation relative to straight line $O_{1} O_{2}$, each of the points O_{1} and O_{2} is transformed into itself.
In triangle $E F G$, segment $E H$ is an altitude to side $F G$ and segment $O_{1} O_{2}$ is the midline. Therefore, segment $E H$ is bisected by $O_{1} O_{2}$ and is perpendicular to it. It follows from here that points E and H are two symmetric points relative to the line $O_{1} O_{2}$. We obtained that symmetry relative to line $O_{1} O_{2}$ transforms angles $\measuredangle O_{1} H O_{2}$ and $\measuredangle O_{1} E O_{2}$ one into the other.
Therefore, $\measuredangle O_{1} H O_{2}=\measuredangle O_{1} E O_{2}$, and hence: $\measuredangle P T V+\measuredangle O_{1} E O_{2}=180^{\circ}$, and finally, we obtain: $\measuredangle P T V+\measuredangle F E G=180^{\circ}$.

Figure 4

Property 3.

The point of intersection of the midlines in a cyclic quadrilateral $A B C D$ (point T in Figure 4) belongs to the nine-point circle (the Euler circle) of triangle EFG.
Proof. As is well known the nine-point circle of a triangle is a circle that passes through the following nine points: the middles of the three sides, the three feet of the altitudes (the points of intersection of the altitudes and the sides), and the middles of the three segments between the triangle's vertices and the orthocenter. Any three points of these nine may be used to define the Euler's circle.
Points O_{1} and O_{2} are the middles of sides $E F$ and $E G$, respectively, of triangle $E F G$. Point H is the foot of altitude $O H$ to side $F G$. Therefore points O_{1}, H, and O_{2} are three of the nine points that belong to Euler's circle of triangle $E F G$, and therefore they define the Euler circle of triangle $E F G$.
In Property 2 we proved that the points O_{1}, T, O_{2}, and H are on the same circle. Therefore point T belongs to Euler's circle of triangle $E F G$.

Property 4.

The following equality holds: $\measuredangle P T V=\measuredangle F O G$.
Proof. We make use of the following formula which expresses the cosine of an angle through the complex coordinates of the points that define the angle:
Let $\measuredangle B A C=\alpha$ be an angle where point $A(a)$ is the vertex and where points $B(b)$ and $C(c)$ are located on the sides of the angle in such a manner that rotation around point A at angle α counterclockwise transfers ray $A B$ to ray $A C$.
Then there holds:

$$
\cos \alpha=\cos (\overrightarrow{A B}, \overrightarrow{A C})=\frac{(c-a)(\bar{b}-\bar{a})+(\bar{c}-\bar{a})(b-a)}{2 \sqrt{(c-a)(\bar{c}-\bar{a})} \cdot \sqrt{(b-a)(\bar{b}-\bar{a})}}
$$

From this formula, for angle $F O G$ there holds:

$$
\begin{gather*}
\cos (\overrightarrow{O G, \overrightarrow{O F}})=\frac{(f-0)(\bar{g}-\overline{0})+(\bar{f}-\overline{0})(g-0)}{2 \sqrt{(f-0)(\bar{f}-\overline{0})} \cdot \sqrt{(g-0)(\bar{g}-\overline{0})}}= \tag{13}\\
=\frac{f \cdot \bar{g}+\bar{f} \cdot g}{2 \sqrt{f \cdot \bar{f} \cdot g \cdot \bar{g}}}
\end{gather*}
$$

For angle $P T V$ there holds:

$$
\cos (\overrightarrow{T V}, \overrightarrow{T P})=\frac{(p-t)(\bar{v}-\bar{t})+(\bar{p}-\bar{t})(v-t)}{2 \sqrt{(p-t)(\bar{p}-\bar{t})} \cdot \sqrt{(v-t)(\bar{v}-\bar{t})}}
$$

Let us calculate each of the parentheses that appear in the previous formula:

$$
\begin{aligned}
v-t & =\frac{b+c}{2}-\frac{a+b+c+d}{4}=\frac{b+c-a-d}{4}=\frac{b+c-a-d}{b c-a d} \cdot \frac{b c-a d}{4}= \\
& =\bar{f} \cdot \frac{b c-a d}{4} . \\
\bar{v}-\bar{t} & =\frac{b+c}{2 b c}-\frac{b c d+a c d+a b d+a b c}{4 a b c d}=\frac{a b d+a c d-b c d-a b c}{4 a b c d}= \\
& =\frac{a b d+a c d-b c d-a b c}{a d-b c} \cdot \frac{a d-b c}{4 a b c d}=f \cdot \frac{a d-b c}{4 a b c d} \\
p-t & =\frac{a+b}{2}-\frac{a+b+c+d}{4}=\frac{a+b-c-d}{4}=\frac{a+b-c-d}{a b-c d} \cdot \frac{a b-c d}{4}= \\
& =\bar{g} \cdot \frac{a b-c d}{4} \cdot \\
\bar{p}-\bar{t} & =\frac{a+b}{2 b c}-\frac{b c d+a c d+a b d+a b c}{4 a b c d}=\frac{a c d+b c d-a b d-a b c}{4 a b c d}= \\
& =\frac{a c d+b c d-a b d-a b c}{c d-a b} \cdot \frac{c d-a b}{4 a b c d}=g \cdot \frac{c d-a b}{4 a b c d} .
\end{aligned}
$$

Now, we substitute the expressions obtained in the formula for $\cos (\overrightarrow{T V}, \overrightarrow{T P})$, and obtain:

$$
\begin{aligned}
& \cos (\overrightarrow{T V, \overrightarrow{T P}})=\frac{\bar{g} \cdot \frac{a b-c d}{4} \cdot f \cdot \frac{a d-b c}{4 a b c d}+g \cdot \frac{c d-a b}{4 a b c d} \cdot \bar{f} \cdot \frac{b c-a d}{4}}{2 \sqrt{\bar{g} \cdot \frac{a b-c d}{4} \cdot g \cdot \frac{c d-a b}{4 a b c d}} \cdot \sqrt{\bar{f} \cdot \frac{b c-a d}{4} \cdot f \cdot \frac{a d-b c}{4 a b c d}}}= \\
& =\frac{\frac{b c-a d}{4} \cdot \frac{c d-a b}{4 a b c d}(f \cdot \bar{g}+\bar{f} \cdot g)}{2 \sqrt{\left(\frac{b c-a d}{4}\right)^{2} \cdot\left(\frac{c d-a b}{4 a b c d}\right)^{2} \cdot f \cdot \bar{f} \cdot g \cdot \bar{g}}}=\frac{\frac{b c-a d}{4} \cdot \frac{c d-a b}{4 a b c d}(f \cdot \bar{g}+\bar{f} \cdot g)}{2\left|\frac{b c-a d}{4} \cdot \frac{c d-a b}{4 a b c d}\right| \sqrt{f \cdot \bar{f} \cdot g \cdot \bar{g}}} .
\end{aligned}
$$

An absolute value sign appears in the denominator of the last expression, therefore one of the following options holds for $\cos (\overrightarrow{T V}, \overrightarrow{T P})$:

$$
\begin{align*}
& \cos (\overrightarrow{T V}, \overrightarrow{T P})=\frac{f \bar{g}+\bar{f} \cdot g}{2 \sqrt{f \cdot \bar{f} \cdot g \cdot \bar{g}}, \quad \text { or: }} \tag{14}\\
& \quad \cos (\widehat{T V, \overrightarrow{T P}})=-\frac{f \cdot \bar{g}+\bar{f} \cdot g}{2 \sqrt{f \cdot \bar{f} \cdot g \cdot \bar{g}}} \tag{15}
\end{align*}
$$

Comparing (14) and (15) with (13) shows that one of the following two equations holds true:
$\cos (\overrightarrow{O G}, \overrightarrow{O F})=\cos (\overrightarrow{T V}, \overrightarrow{T P}) \quad$ or $\quad \cos (\overrightarrow{O G}, \overrightarrow{O F})=-\cos (\overrightarrow{T V}, \overrightarrow{T P})$,
therefore one of the following two equalities holds true for the angles:

$$
\measuredangle F O G=\measuredangle P T V \text { or } \measuredangle F O G=180^{\circ}-\measuredangle P T V
$$

Let us prove that the second equality cannot hold.
From Property 2, it follows that $\measuredangle F E G=180^{\circ}-\measuredangle P T V$. Therefore, if the second equality holds, there also holds $\measuredangle F O G=\measuredangle F E G$. But, since these two angles rest on segment $F G$ and their vertexes (points E and O) lie on the same perpendicular $O H$ to $F G$, and there holds: $O H>E H$, and therefore $\measuredangle F O G<\measuredangle F E G$.
Since we have a contradiction, and therefore the assumption that $\measuredangle F O G=180^{\circ}-\measuredangle P T V$ is satisfied is not true.
Therefore, the first equality, $\measuredangle F O G=\measuredangle P T V$, is the true one.

Note:

In the "Theory of a convex quadrilateral and a circle that forms Pascal points on the sides of the quadrilateral" (see [3], [4], [5]) it is proven that in the case of a cyclic quadrilateral, the middles of a pair of opposite sides are Pascal points formed by the circle whose diameter is the segment that connects the point of intersection of the diagonals of the quadrilateral and the point of intersection of the other pair of opposite sides (see [4, Theorem 3]).
For example, in Figure 5, points P and Q are Pascal points that are formed on sides $A B$ and $C D$ by the circle whose diameter is segment $E F$, and points V and W are Pascal points formed on sides $B C$ and $A D$ by the circle whose diameter is segment $E G$.

Therefore, properties (2) and (3) we proved above can be formulated as follows:

Figure 5

Let $A B C D$ be a quadrilateral inscribed in circle ε (O is the center of ε), where:
E is the point of intersection of the diagonals;
F is the point of intersection of the continuations of sides $B C$ and $A D$; G is the point of intersection of the continuations of sides $A B$ and $C D$; P and Q are Pascal points on sides $A B$ and $C D$ formed using the circle whose diameter is segment EF;
V and W are Pascal points on sides $B C$ and $A D$ formed using the circle whose diameter is segment $E G$;
Then:
(i) The sum of two angles one of which is the angle between the lined $P Q$ and $V W$, and the other is the angle of triangle $E F G$ whose vertex at point E equals 180°.
(ii) Point of intersection of lines $P Q$ and $V W$ belongs to the nine-point circle of triangle $E F G$.

References

[1] Andreescu, T. and Andrica, D., Complex Numbers from A to...Z, Second Edition, Birkhauser, Boston, (2014).
[2] Coxeter, H. S. M. and Greitzer S. L., Geometry revisited, Maa, Vol. 19, (1967).
[3] Fraivert, D., The theory of a convex quadrilateral and a circle that forms "Pascal points" - the properties of "Pascal points" on the sides of a convex quadrilateral, Journal of Mathematical Sciences: Advances and Applications, 40 (2016) 1-34. http: //dx.doi.org/10.18642/jmsaa_7100121666.
[4] Fraivert, D., The Theory of an Inscribable Quadrilateral and a Circle that Forms Pascal Points, Journal of Mathematical Sciences: Advances and Applications, 42 (2016) 81-107. http://dx.doi.org/10.18642/jmsaa_7100121742.
[5] Fraivert, D., Properties of the Tangents to a Circle that Forms Pascal Points on the Sides of a Convex quadrilateral, Forum Geometricorum, 17 (2017) 223-243. http://forumgeom.fau.edu/FG2017volume17/FG201726index.html.
[6] Hadamard, J., Lessons in Geometry, American Mathematical Society, Vol. I. Plane Geometry, (2008).
[7] Hahn, L. S., Complex numbers and geometry, Cambridge University Press, (1994).
[8] Schwerdtfeger, H., Geometry of Complex Numbers, Dover, New York, (1979).
[9] Skopets, Z., Geometric Miniature, (In Russian), Prosveshenie, Moscow, (1990).
[10] Yaglom, I. M., Complex Numbers in Geometry, Academic Press, New York, (1968).

DEPARTMENT OF MATHEMATICS
SHAANAN COLLEGE
HAIFA 26109 ISRAEL
E-mail address: davidfraivert@gmail.com

[^0]: Keywords and phrases: The method of complex numbers in plane geometry, Cyclic quadrilateral, Perpendicular circles, Nine-point circle, Pascal points on the sides of a quadrilateral.

