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NEW APPLICATIONS OF METHOD OF
COMPLEX NUMBERS IN THE GEOMETRY

OF CYCLIC QUADRILATERALS

DAVID FRAIVERT

Abstract. Any cyclic quadrilateral whose sides are not parallel can define
a triangle with one vertex at the point of intersection of the quadrilateral’s
diagonals and the other vertices at the points of intersection of the contin-
uations of the quadrilateral’s pairs of opposite sides.
Using a cyclic quadrilateral and this triangle, the following four circles may
be defined: the circumcircle of the quadrilateral, two circles with diameters
that are the sides of the triangle that issue from the point of intersection of
the quadrilaterals diagonals, and the Euler circle of the triangle.
In the current paper, we shall prove four properties that relate the quadri-
lateral, the triangle and these circles.
We shall show that the two circles whose diameters are the sides of the tri-
angle are perpendicular to the circumcircle of the quadrilateral.
We shall prove equalities that relate the angle between the midlines in the
quadrilateral with other angles.
We shall show that the point of intersection of the midlines of the quadri-
lateral belongs to the Euler’s circle of the triangle defined using the quadri-
lateral.
In proving these properties we shall make use of the method of complex num-
bers in plane geometry, thereby illustrating different uses of this method of
proof.

1. Introduction

The method of complex numbers in plane geometry is founded on the
following principles:

(1) We choose a Cartesian system of coordinates in the plane. Any point,
M , that belongs to the plane is given a pair of real coordinates (x, y) or
a complex coordinate m = x+ yi.
The number m = x− yi is the conjugate of m, and is the complex co-
ordinate of point M ′, which is symmetrical to point M relative to the
real axis of the system.

Keywords and phrases: The method of complex numbers in plane geometry, Cyclic
quadrilateral, Perpendicular circles, Nine-point circle, Pascal points on the sides of a
quadrilateral.

(2010)Mathematics Subject Classification: 51M04, 51M99
Received: 2.04.2017. In revised form: 1.11.2017. Accepted: 12.12.2017.



6 David Fraivert

(2) By using the coordinate m and the conjugate number m together, we
can describe the properties of point M . For example: the product m·m
represents the square of the distance of point M from the origin, the
equality m = m holds when m is a real number.

(3) There exist formulas that relate points that are located on geometrical
shapes or which express properties of the shapes. These formulas include
the coordinates of points (in the form of single letters without separation
into real and imaginary parts) and the conjugate of the coordinates (also
in the form of single letters).

(4) Most of the formulas can be simplified by using points that belong to
a unit circle (a circle whose center lies at the origin and whose radius
equals 1).

Some isolated formulas of the type described may be found in [7], [8], [10];
a system of formulas in can be found, for example, in [9, pp.154-181], [1].
Utilizing the method of complex numbers in plane geometry allows us to
solve geometrical problems algebraically through defined formulas and tech-
nical calculations with polynomials.
The data and requirement of the problem determine which formulas of the
method of complex numbers are suitable for solving this problem.
When a non-standard problem in geometry is given, its solution using the
”ordinary” method (geometrical proof) often requires creativity and the
ability to carry out a prolonged search for the gist of the solution; using
the method of complex numbers in plane geometry allows transforming the
problem into a standard algebraic.
The main shortcoming of the complex number method is that, during the
process of solution, a stage may be reached where expressions are obtained
that are so huge that it is difficult to simplify them manually. At this stage,
we can make use of computer software such as Mathematica or MATLAB.
To prove the properties set forth in this paper, we shall make use of the
method of complex numbers in the geometry of the plane. For proving
properties 1 and 4, we shall make simplify manually; for proving properties
2 and 3, we shall make use of Mathematica software.

2. Properties that relate a cyclic quadrilateral to a triangle
defined by it and to circles defined using the triangle

General data for all properties.
Let ABCD be a quadrilateral inscribed in circle ε (O is the center of ε), in
which:
E is the point of intersection of the diagonals;
F is the point of intersection of the continuations of sides BC and AD;
G is the point of intersection of the continuations of sides AB and CD;
T is the point of intersection of midlines PQ and VW (see Figure 1);
O1 is the middle of segment EF and O2 is the middle of segment EG.
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Figure 1

Property 1.
Additional data:
ωEF is a circle whose diameter is segment EF ,
ωEG is a circle whose diameter is segment EG (see Figure 2),
H is the other point of intersection of circles ωEF and ωEG (in addition to
point E). Then:

(a) circles ωEF and ωEG are each perpendicular to circumcircle ε of the
quadrilateral;

(b) point H belongs to the straight line FG.

Figure 2
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Proof.
(a) To prove that circles ε and ωEF are perpendicular, it is sufficient to
verify that the equality

(1) |OO1|2 = r2ε + r2ωEF

is satisfied, where rε is the radius of circle ε and rωEF is the radius of circle
ωEF .
We shall make use of the method of complex numbers in plane geometry.
We choose a system of coordinates such that circle ε is the unit circle: in
other words, point O is the origin of the system and rε = 1. In this system,
the equation of the circle ε is, z· z = 1, where z and z are a complex coordi-
nate and its conjugate of an arbitrary point that is located on circle ε.
We denote the complex coordinates of points A, B, C and D by a, b, c and d,
respectively. These points are located on the unit circle. Thus, the following
relation holds between the coordinates of the points and their conjugates:

ā =
1

a
, b̄ =

1

b
, c̄ =

1

c
and d̄ =

1

d
.

Since segmentO1E is the radius of circle ωEF , we can write down rωEF = |O1E|.
We substitute the values of rε and rωEF in equality (1) to obtain:

(2) |OO1|2 = 1 + |O1E|2

Using the complex coordinates of points E, O1, and O (and their conju-
gates), equality (2) can be written as:

(o1 − 0)
(
o1 − 0

)
= 1 + (e− o1) (e− o1).

Point O1 is the middle of segment EF , therefore for coordinate o1 and

number o1 there holds: o1 =
1

2
(f + e) and o1 =

1

2

(
f + e

)
, as well as 0 = 0.

Therefore, the last equality can be transformed into:
1

4
(f + e)

(
f + e

)
= 1 +

1

4
(e− f)

(
e− f

)
,

and finally we obtain:

(3) fe+ ef = 2

Now, we express the complex coordinates of points E and F (and their
conjugates) using the coordinates of points A, B, C, and D.
To this end, we shall make use of the following formulas:

Let K(k), L(l),M(m), and N(n) be four points that belong to the unit
circle, and let S(s) be the point of intersection of the straight lines that pass
through the chords KL and MN in the unit circle.
For the complex coordinate of S and its conjugate, there holds:

(4) s̄ =
k + l −m− n
kl −mn

and s =
lmn+ kmn− kln− klm

mn− kl
Using the formulas (4), the complex coordinates (and their conjugates) of
points E and F can be expressed as:

(5) e =
a+ c− b− d
ac− bd

and e =
bcd+ abd− acd− abc

bd− ac

(6) f =
a+ d− b− c
ad− bc

and f =
bcd+ abc− acd− abd

bc− ad
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Let us calculate the left-hand side of (3). We substitute in it expressions (5)
and (6), and obtain:

fe+ ef =

=
bcd+ abc− acd− abd

bc− ad
· a+ c− b− d

ac− bd
+
bcd+ abd− acd− abc

bd− ac
· a+ d− b− c

ad− bc
.

After adding and multiplying the algebraic fractions, and simplifying the
numerator of the obtained fraction, we obtain the following:

−2b2cd+ 2abc2 − 2a2cd+ 2abd2

(bc− ad)(ac− bd)
= 2· −b

2cd+ abc2 − a2cd+ abd2

abc2 − b2cd− a2cd+ abd2
= 2· 1 = 2.

Since we have shown that equality (3) holds, it follows that equalities (2)
and (1) also hold. In other words, circles ε and ωEF are perpendicular.
The perpendicularity of circles ε and ωEG is proven in a similar manner.

(b) The claim that H belongs to straight line FG follows from the fact that
angles ]EHF and ]EHG are both inscribed angles resting on the diameter
of the circle and therefore each one measures 90◦. Therefore ]FHG is a
straight angle.
Since H ∈ FG and EH⊥FG, the following two properties hold:

(i) Segment EH is an altitude to side FG in triangle 4EFG.
(ii) Inversion relative to circle ε transforms each of the circles ωEF and

ωEG into itself (since they are perpendicular to ε), and hence it trans-
forms their points of intersection E and H one into the other.

�

Property 2.
The sum of two angles one of which is the angle between the midlines PQ
and VW , and the other is the angle of triangle EFG whose vertex at point
E equals 180◦ (in Figure 3, ]PTV + ]FEG = 180◦).

Figure 3
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Proof. In the first phase, we prove that straight lines PQ and VW pass
through points O1 and O2, respectively.
We use the following property of the complete quadrilateral (see [6, Section
194]: ”in the complete quadrilateral, the middles of the diagonals are on the
same straight line”.
In our case, in the complete quadrilateral AFBECD (see Fig. 3), points
P , Q and O1 are the middles of diagonals AB, CD and EF , respectively.
Therefore, they are on the same straight line.
Similarly, in the complete quadrilateral BGCEDA the points V , W and
O2 are the middles of the diagonals BC, AD, and EG, respectively, and
therefore they lie on the same straight line.
We now prove that the four points, O1, T , O2, and H, lie on the same
circle.
Again we employ the method of complex numbers. We again choose a
system where circle ε is the unit circle, and express the complex coordinates
of points G, O1, T , O2, and H (and their conjugates) using the coordinates
of points A, B, C, and D.
Using the formulas (4) which were presented in the proof of Property 1, the
complex coordinates (and their conjugates) of point G can be expressed as:

(7) g =
c+ d− a− b
cd− ab

and g =
abd+ abc− bcd− acd

ab− cd
The points P and Q are the middles of sides AB and CD.

Therefore, p =
1

2
(a+ b) and q =

1

2
(c+ d).

The point T is the middle of segment PQ. Therefore, the coordinate of T
(and its conjugate) can be expressed as:

(8)
t =

1

2
(p+ q) =

1

4
(a+ b+ c+ d) and

t =
1

4
(a+ b+ c+ d) =

bcd+ acd+ abd+ abc

4abcd

The complex coordinates of points O1 and O2 (which are the middles of
segments EF and EG), and their conjugates shall be:

(9) o1 =
1

2
(f + e) and o1 =

1

2
(f + e)

(10) o2 =
1

2
(g + e) and o2 =

1

2
(g + e)

Points E and H are the points of intersection of circles ωEF and ωEG, which
are perpendicular to circle ε. Inversion relative to circle ε transforms each
of the circles ωEF and ωEG into itself. Therefore, it transforms their points
of intersection E and H one into the other (see for example [2, chapter 5,
paragraph 5]), and therefore, the complex coordinates of points E and H
and their conjugates satisfy the following relation (see [10, paragraph 13]):

(11) h =
1

e
and h =

1

e

We use the following property of four points which belong to the same circle
(see [10, paragraph 7]): Points K(k), L(l), M(m) and N(n) belong to the
same circle if and only if the complex coordinates of these points and their
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conjugates satisfy the following relation:
k −m
l −m

:
k − n
l − n

=
k −m
l −m

:
k − n
l − n

.

Therefore, in order to prove that points O1, T , O2, and H lie on the same
circle, it is enough to show that the following relation is satisfied:

(12)
o1 − t
o2 − t

:
o1 − h
o2 − h

=
o1 − t
o2 − t

:
o1 − h
o2 − h

By substituting the expressions for the letters t, t, o1, o1, o2, o2, h, and h
obtained above into (12), we get:

(
bcd+ abc− acd− abd

bc− ad

)
+

(
bcd+ abd− acd− abc

bd− ac

)
2

−
(
a+ b+ c+ d

4

)
(
abd+ abc− bcd− acd

ab− cd

)
+

(
bcd+ abd− acd− abc

bd− ac

)
2

−
(
a+ b+ c+ d

4

)


"

"



(
abd+ abc− bcd− acd

ab− cd

)
+

(
bcd+ abd− acd− abc

bd− ac

)
2

−
(

ac− bd
a+ c− b− d

)
(
bcd+ abc− acd− abd

bc− ad

)
+

(
bcd+ abd− acd− abc

bd− ac

)
2

−
(

ac− bd
a+ c− b− d

)


=

=



(
a+ d− b− c
ad− bc

)
+

(
a+ c− b− d
ac− bd

)
2

−
(
bcd+ acd+ abd+ abc

4abcd

)
(
c+ d− a− b
cd− ab

)
+

(
a+ c− b− d
ac− bd

)
2

−
(
bcd+ acd+ abd+ abc

4abcd

)


"

"



(
c+ d− a− b
cd− ab

)
+

(
a+ c− b− d
ac− bd

)
2

−
(

bd− ac
bcd+ abd− acd− abc

)
(
a+ d− b− c
ad− bc

)
+

(
a+ c− b− d
ac− bd

)
2

−
(

bd− ac
bcd+ abd− acd− abc

)


After simplifying the two sides of the equality (for this, we used Mathemat-
ica R© software), we obtain the same expression,

−
(b− c) (a− d)

(
a2cd+ b2cd+ ab

(
c2 − 4cd+ d2

))
(a− b) (c− d) (a2bc+ a (b2 − 4bc+ c2) d+ bcd2)

, on both sides.

Therefore, equality (12) holds, and points O1, T , O2 and H lie on the same
circle.
Hence, it follows that quadrilateral O1TO2H is inscribable (see Fig. 4), and
therefore the opposite angles in this quadrilateral satisfy:
]O1TO2 + ]O1HO2 = 180◦ or ]PTV + ]O1HO2 = 180◦ (because
]O1TO2 = ]PTV ).
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We now prove that angles ]O1HO2 and ]O1EO2 are equal.
By symmetry transformation relative to straight line O1O2, each of the
points O1 and O2 is transformed into itself.
In triangle EFG, segment EH is an altitude to side FG and segment O1O2

is the midline. Therefore, segment EH is bisected by O1O2 and is perpen-
dicular to it. It follows from here that points E and H are two symmetric
points relative to the line O1O2. We obtained that symmetry relative to line
O1O2 transforms angles ]O1HO2 and ]O1EO2 one into the other.
Therefore, ]O1HO2 = ]O1EO2, and hence: ]PTV + ]O1EO2 = 180◦, and
finally, we obtain: ]PTV + ]FEG = 180◦.

�

Figure 4

Property 3.
The point of intersection of the midlines in a cyclic quadrilateral ABCD
(point T in Figure 4) belongs to the nine-point circle (the Euler circle) of
triangle EFG.

Proof. As is well known the nine-point circle of a triangle is a circle that
passes through the following nine points: the middles of the three sides, the
three feet of the altitudes (the points of intersection of the altitudes and the
sides), and the middles of the three segments between the triangle’s vertices
and the orthocenter. Any three points of these nine may be used to define
the Euler’s circle.
Points O1 and O2 are the middles of sides EF and EG, respectively, of
triangle EFG. Point H is the foot of altitude OH to side FG. Therefore
points O1, H, and O2 are three of the nine points that belong to Euler’s
circle of triangle EFG, and therefore they define the Euler circle of triangle
EFG.
In Property 2 we proved that the points O1, T , O2, and H are on the same
circle. Therefore point T belongs to Euler’s circle of triangle EFG.

�
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Property 4.
The following equality holds: ]PTV = ]FOG.

Proof. We make use of the following formula which expresses the cosine
of an angle through the complex coordinates of the points that define the
angle:
Let ]BAC = α be an angle where point A(a) is the vertex and where points
B(b) and C(c) are located on the sides of the angle in such a manner that
rotation around point A at angle α counterclockwise transfers ray AB to ray
AC.
Then there holds:

cosα = cos

(
−̂−→
AB,

−→
AC

)
=

(c− a)
(
b− a

)
+ (c− a) (b− a)

2
√

(c− a) (c− a)·
√

(b− a)
(
b− a

)
From this formula, for angle FOG there holds:

(13)

cos

(
−̂−→
OG,

−−→
OF

)
=

(f − 0)
(
g − 0

)
+
(
f − 0

)
(g − 0)

2
√

(f − 0)
(
f − 0

)
·
√

(g − 0)
(
g − 0

) =

=
f · g + f · g

2
√
f · f · g· g

For angle PTV there holds:

cos

(
−̂→
TV ,
−→
TP

)
=

(p− t)
(
v − t

)
+
(
p− t

)
(v − t)

2
√

(p− t)
(
p− t

)
·
√

(v − t)
(
v − t

) .

Let us calculate each of the parentheses that appear in the previous for-
mula:

v − t =
b+ c

2
− a+ b+ c+ d

4
=
b+ c− a− d

4
=
b+ c− a− d
bc− ad

· bc− ad
4

=

= f · bc− ad
4

.

v − t =
b+ c

2bc
− bcd+ acd+ abd+ abc

4abcd
=
abd+ acd− bcd− abc

4abcd
=

=
abd+ acd− bcd− abc

ad− bc
· ad− bc

4abcd
= f · ad− bc

4abcd

p− t =
a+ b

2
− a+ b+ c+ d

4
=
a+ b− c− d

4
=
a+ b− c− d
ab− cd

· ab− cd
4

=

= g· ab− cd
4

.

p− t =
a+ b

2bc
− bcd+ acd+ abd+ abc

4abcd
=
acd+ bcd− abd− abc

4abcd
=

=
acd+ bcd− abd− abc

cd− ab
· cd− ab

4abcd
= g· cd− ab

4abcd
.

Now, we substitute the expressions obtained in the formula for cos

(
−̂→
TV ,
−→
TP

)
,

and obtain:
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cos

(
−̂→
TV ,
−→
TP

)
=

g· ab− cd
4
· f · ad− bc

4abcd
+ g· cd− ab

4abcd
· f · bc− ad

4

2

√
g· ab− cd

4
· g· cd− ab

4abcd
·
√
f · bc− ad

4
· f · ad− bc

4abcd

=

=

bc− ad
4
· cd− ab

4abcd

(
f · g + f · g

)
2

√(
bc− ad

4

)2

·
(
cd− ab
4abcd

)2

· f · f · g· g

=

bc− ad
4
· cd− ab

4abcd

(
f · g + f · g

)
2

∣∣∣∣bc− ad4
· cd− ab

4abcd

∣∣∣∣√f · f · g· g .

An absolute value sign appears in the denominator of the last expression,

therefore one of the following options holds for cos

(
−̂→
TV ,
−→
TP

)
:

(14) cos

(
−̂→
TV ,
−→
TP

)
=

fg + f · g
2
√
f · f · g· g

, or:

(15) cos

(
−̂→
TV ,
−→
TP

)
= − f · g + f · g

2
√
f · f · g· g

Comparing (14) and (15) with (13) shows that one of the following two
equations holds true:

cos

(
−̂−→
OG,

−−→
OF

)
= cos

(
−̂→
TV ,
−→
TP

)
or cos

(
−̂−→
OG,

−−→
OF

)
= − cos

(
−̂→
TV ,
−→
TP

)
,

therefore one of the following two equalities holds true for the angles:
]FOG = ]PTV or ]FOG = 180◦ − ]PTV .

Let us prove that the second equality cannot hold.
From Property 2, it follows that ]FEG = 180◦ − ]PTV . Therefore, if the
second equality holds, there also holds ]FOG = ]FEG. But, since these
two angles rest on segment FG and their vertexes (points E and O) lie on
the same perpendicular OH to FG, and there holds: OH > EH, and there-
fore ]FOG < ]FEG.
Since we have a contradiction, and therefore the assumption that
]FOG = 180◦ − ]PTV is satisfied is not true.
Therefore, the first equality, ]FOG = ]PTV , is the true one.

�
Note:
In the ”Theory of a convex quadrilateral and a circle that forms Pascal
points on the sides of the quadrilateral” (see [3], [4] , [5]) it is proven that
in the case of a cyclic quadrilateral, the middles of a pair of opposite sides
are Pascal points formed by the circle whose diameter is the segment that
connects the point of intersection of the diagonals of the quadrilateral and
the point of intersection of the other pair of opposite sides (see [4, Theorem
3]).
For example, in Figure 5, points P and Q are Pascal points that are formed
on sides AB and CD by the circle whose diameter is segment EF , and
points V and W are Pascal points formed on sides BC and AD by the circle
whose diameter is segment EG.

Therefore, properties (2) and (3) we proved above can be formulated as
follows:
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Figure 5

Let ABCD be a quadrilateral inscribed in circle ε (O is the center of ε),
where:
E is the point of intersection of the diagonals;
F is the point of intersection of the continuations of sides BC and AD;
G is the point of intersection of the continuations of sides AB and CD;
P and Q are Pascal points on sides AB and CD formed using the circle
whose diameter is segment EF ;
V and W are Pascal points on sides BC and AD formed using the circle
whose diameter is segment EG;
Then:

(i) The sum of two angles one of which is the angle between the lined PQ
and VW , and the other is the angle of triangle EFG whose vertex at
point E equals 180◦.

(ii) Point of intersection of lines PQ and VW belongs to the nine-point
circle of triangle EFG.
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