Cyclic quadrilaterals corresponding to a given Varignon parallelogram

OVIDIU T. POP, SÁNDOR NAGYDOBAI KISS and NICUŞOR MINCULETE

Abstract

In this paper, we will study the cyclic quadrilaterals that have as a Varignon parallelogram any given parallelogram.

1. Introduction

In this article we obtain the results from [1], albeit through distinct and divergent methods. The description of the geometric locus featured in this article is more detailed. The following result is well-known.

Theorem 1.1 (Varignon Theorem, 1731). Let $A B C D$ be a quadrilateral. If M, N, P, Q are the midpoints of the sides $A B, B C, C D$, and $D A$ respectively, then $M N P Q$ is a parallelogram and $2 T[M N P Q]=T[A B C D]$, where $T[A B C D]$ is the area of quadrilateral $A B C D$.

In [5] one reciprocal theorem of Theorem 1.1 is demonstrated.
Theorem 1.2. Given non collinear points so that $M N P Q$ is a parallelogram and considering an arbitrary point A in the plane of $M N P Q$, there exist B, C, D so that, M, N, P, Q are midpoints of sides $A B, B C, C D$, and $D A$ respectively.

In this paper, we will consider convex quadrilaterals. If $A B C D$ is a convex quadrilateral, M, N, P, Q are the midpoints of the sides $A B, B C, C D$ and $D A$ respectively, then the Varignon parallelogram corresponding to $A B C D$ quadrilateral is convex. The $M N P Q$ parallelogram, except for the points M, N, P, Q is situated in the interior of $A B C D$ quadrilateral.

According to Theorem 1.1, the quadrilateral $M N P Q$ is call the Varignon's parallelogram corresponding to $A B C D$ quadrilateral.

Theorem 1.2 implies that given $M N P Q$ parallelogram there is an infinite number of quadrilaterals that have as a Varignon parallelogram the $M N P Q$ parallelogram.

[^0]The following result is known (see [4]).
Theorem 1.3. Let $A B C D$ be a cyclic quadrilateral, ω the center of the circumcircle of $A B C D$. If $M N P Q$ is the Varignon's parallelogram corresponding to $A B C D$ quadrilateral, then $\omega M \perp A B, \omega N \perp B C, \omega P \perp C D$ and $\omega Q \perp D A$.

In this paper, we will solve the following problem: given the $M N P Q$ parallelogram, we will determine the geometrical locus of the points ω with the property that there exists a cyclic quadrilateral $A B C D$, the centre of the circumscribed circle of the $A B C D$ quadrilateral is ω and $M N P Q$ is the Varignon parallelogram corresponding to $A B C D$ quadrilateral.

2. Main Results

Case I. Let $M N P Q$ be a parallelogram corresponding to the cyclic quadrilateral $A B C D$ and we suppose that ω, the centre of the circumscribed circle of the $A B C D$ quadrilateral, is situated in the interior of the $M N P Q$ parallelogram.
Lemma 2.1. Let $A B C D$ be a cyclic quadrilateral, ω the centre of the circumscribed circle of the $A B C D$ quadrilateral, $M N P Q$ the corresponding Varignon parallelogram to the $A B C D$ quadrilateral, $M \in A B, N \in B C$, $P \in C D$ and $Q \in D A$. If ω is situated in the interior of the $M N P Q$ parallelogram, then $\widehat{\omega Q M} \equiv \widehat{\omega N M}$ and the analogs.

Proof. The quadrilaterals $\omega Q A M$ and $\omega M B N$ are cyclic (Fig. 2.1), therefore $\widehat{\omega Q M} \equiv \widehat{\omega A M}$ and $\widehat{\omega N M} \equiv \widehat{\omega B M}$ respectively. But the triangle $\omega A B$ is isosceles, therefore $\widehat{\omega A M} \equiv \widehat{\omega B M}$ and according to all the congruences above, yields the conclusion of the lemma.

Next, we prove the existence of a point ω in an arbitrary parallelogram $M N P Q$ such that $\widehat{\omega Q M} \equiv \widehat{\omega N M}$.

Proposition 2.1. There exist a point ω situated in the interior of the parallelogram $M N P Q$ such that $\widehat{\omega Q M} \equiv \widehat{\omega N M}$.

Proof. We construct the straightline $N T^{\prime}$, where $T^{\prime} \in(M Q)$ and $T^{\prime} U \| M N$, $U \in(N P)$, implies $\widehat{T^{\prime} N M} \equiv \widehat{N T^{\prime} U}$. If $\{V\}=T^{\prime} N \cap M U$ and let V^{\prime} be the isogonal conjugate of a point V with respect to a triangle $M T^{\prime} U$ is constructed by reflecting the line $T^{\prime} V$ about the angle bisector of T^{\prime}, then $\widehat{M T^{\prime} V^{\prime}} \equiv \widehat{V T^{\prime} U}$. Finally, we construct the parallel through Q to the line $T^{\prime} V^{\prime}$ which intersects the line $T^{\prime} N$ in ω. Therefore, we have $\widehat{\omega Q M} \equiv \widehat{\omega N M}$. Hence, for every straightline $N T^{\prime}$, with $T^{\prime} \in(M Q)$, there is a single point ω such that $\widehat{\omega Q M} \equiv \widehat{\omega N M}$.

Lemma 2.2. If ω is a point situated in the interior of the $M N P Q$ parallelogram and $\widehat{\omega Q M} \equiv \widehat{\omega N M}$, then $\widehat{\omega M N} \equiv \widehat{\omega P N}$.
Proof. We note $m(\widehat{\omega Q M})=\alpha, m(\widehat{Q M N})=a, m(\widehat{\omega M N})=x, m(\widehat{\omega P N})=$ y, where $\alpha, a, x, y \in\left(0^{\circ}, 180^{\circ}\right)$. We have to prove that $x=y$ (Fig. 2.2).

Fig. 2.1

Fig. 2.2

In the triangles $M Q \omega$ and $M N \omega$, according to the sine theorem, yields $\frac{\sin \widehat{\omega Q M}}{\omega M}=\frac{\sin \widehat{Q M \omega}}{\omega Q}$ and $\frac{\sin \widehat{\omega N M}}{\omega M}=\frac{\sin \widehat{\omega M N}}{\omega N}$, or $\frac{\sin \alpha}{\omega M}=\frac{\sin (a-x)}{\omega Q}$ and $\frac{\sin \alpha}{\omega M}=\frac{\sin x}{\omega N}$, from where $\frac{\sin (a-x)}{\sin x}=\frac{\omega Q}{\omega N}$, equivalent to

$$
\begin{equation*}
\sin a \operatorname{ctg} x-\cos a=\frac{\omega Q}{\omega N} . \tag{2.1}
\end{equation*}
$$

Taking that $m(\widehat{\omega Q P})=m(\widehat{\omega N P})=180^{\circ}-a-\alpha$ into account, analogously we obtain that

$$
\begin{equation*}
\sin a \operatorname{ctg} y-\cos a=\frac{\omega Q}{\omega N} . \tag{2.2}
\end{equation*}
$$

From (2.1) and (2.2) yields that $\sin a \cdot \operatorname{ctg} x-\cos a=\sin a \cdot \operatorname{ctg} y-\cos a$, equivalent to $\operatorname{ctg} x=\operatorname{ctg} y$. Because $x, y \in\left(0,180^{\circ}\right)$, according to the previous equality, we obtain that $x=y$.

Theorem 2.1. Let ω be a point situated in the interior of $M N P Q$ parallelogram so that $\widehat{\omega Q M} \equiv \widehat{\omega N M}$. If $A B \perp \omega M, B C \perp \omega N, C D \perp \omega P$ and $D A \perp \omega Q$, then $A B C D$ is a cyclic quadrilateral and ω is the center of the circumscribed circle of the $A B C D$ quadrilateral.

Proof. Because $\widehat{\omega Q M} \equiv \widehat{\omega N M}$, according to Lemma 2.2 yields $\widehat{\omega M N} \equiv$ $\widehat{\omega P N}$. But $M N P Q$ is a parallelogram, which means that $\widehat{\omega Q P} \equiv \widehat{\omega N P}$. From $A B \perp \omega M, D A \perp \omega Q$ and $B C \perp \omega N$ (Fig. 2.3), it results that the quadrilaterals $\omega Q A M$ and $\omega M B N$ are cyclic, which means that $\widehat{\omega Q M} \equiv$ $\widehat{\omega A M}$ and $\widehat{\omega N M} \equiv \widehat{\omega B M}$. But $\widehat{\omega Q M} \equiv \widehat{\omega N M}$ and taken all the above into consideration, yields $\widehat{\omega A M} \equiv \widehat{\omega B M}$. In conclusion, the triangle $\omega A B$ is isosceles, therefore

$$
\begin{equation*}
\omega A \equiv \omega B \tag{2.3}
\end{equation*}
$$

Fig. 2.3
Analogously, from $\widehat{\omega M N} \equiv \widehat{\omega P N}$ and $\widehat{\omega Q P} \equiv \widehat{Q N P}$, it results that $\omega B \equiv$ $\omega C, \omega D \equiv \omega C$ respectively. Taking (2.3) into account, we obtain that $\omega A \equiv \omega B \equiv \omega C \equiv \omega D$, therefore $A B C D$ is a cyclic quadrilateral and ω is the centre of the circumscribed circle of the $A B C D$ quadrilateral.

Remark 2.1. Theorem 2.1 is a reciprocal results to Lemma 2.1.
Let $M N P Q$ be a Varignon's parallelogram corresponding to the cyclic quadrilateral $A B C D$. Let ω be the centre of the circumcircle of $A B C D$. We suppose that ω is situated in the interior of the $M N P Q$ parallelogram. We will determine the plane area in which ω is situated.
Taking Theorem 1.3 and Lemma 2.1 into account, we have that $\omega M \perp A B$, $\omega N \perp B C, \omega P \perp C D, \omega Q \perp D A$ and $[A B C D] \cap[M N P Q]=[M, N, P, Q]$ (see Fig. 2.1), where $[A B C D]$ is the surface determined by the $A B C D$ quadrilateral and its interior.

If $m(\widehat{M N P})<90^{\circ}$, then any perpendiculars in N on ωN does not intersect the interior of $M N P Q$ parallelogram (Fig. 2.4). If $m(\widehat{M N P}) \geq 90^{\circ}$, we consider the following lines $d_{1} \perp M N, d_{2} \perp M N, M \in d_{1}, P \in d_{2}$, $d_{3} \perp M Q, d_{4} \perp M Q, M \in d_{3}, P \in d_{4}, d_{1} \cap d_{4}=\{S\}, d_{3} \cap d_{2}=\{T\}$.
Let $\left(d_{1} N\right.$ be the open half plane determinated by d_{1} line and the N point. Because ω point is situated in the interior of the $M N P Q$ parallelogram, $\omega M \perp A B$ and $M N P Q$ parallelogram, except for the points M, N, P, Q is situated in the interior of $A B C D$ quadrilateral, it results that $\omega \in\left(d_{1} N \cap\right.$ $\left(d_{3} Q\right.$. Similarly $\omega \in\left(d_{2} Q \cap\left(d_{4} N\right.\right.$. The surface we are searching for is represented by the interior of the $M S P T$ parallelogram (Fig. 2.4).

Fig. 2.4

Fig. 2.5

Fig. 2.6

Fig. 2.7

Taking the previous remarks into account, we have a solution if and only if d_{1} line intersects $[Q P)$. We do not have a solution in a contrary case, then $c \geq 0$ (see Fig. 2.5).

If $M N P Q$ is a rectangle, then its interior is convenient for ω point (Fig. 2.6) and if $M N P Q$ is a rhomb, then the interior of the marked area from Fig. 2.7 is convenient.

In the following, let $M N P Q$ be a parallelogram, where its centre is the origin of the axis system (Fig. 2.8), $a>0, b>0$ and $c<a$.

Lemma 2.3. Let $M N P Q$ be a given parallelogram (see Fig. 2.8). Then
a) $m(\widehat{Q M N}) \geq 90^{\circ} \Leftrightarrow-c \leq a$.
b) If $M M^{\prime} \perp Q P, M^{\prime} \in Q P$, then $M^{\prime} \in[Q P) \Leftrightarrow-c \leq a$ and $c<0$.

Fig. 2.8
Proof. a) We have that $M N=a-c, M Q=\sqrt{(a+c)^{2}+4 b^{2}}, N Q=$ $\sqrt{4 a^{2}+4 b^{2}}$ and $\cos \widehat{Q M N}=\frac{M Q^{2}+M N^{2}-Q N^{2}}{2 M Q \cdot M N}=\frac{c^{2}-a^{2}}{M Q \cdot M N}$. Then $m(\widehat{Q M N}) \geq 90^{\circ}$ if and only if $\cos \widehat{Q M N} \leq 0$, equivalent to $c^{2}-a^{2} \leq 0$, equivalent to $(c-a)(c+a) \leq 0$, which is equivalent to $c+a \geq 0$, that yields a).
b) The point M^{\prime} has the coordinates $M^{\prime}\left(c, y_{M^{\prime}}\right)$ and $M^{\prime} \in[Q P)$ if and only if $-a \leq c<-c$, which yields b).

Theorem 2.2. Let $M N P Q$ be a given parallelogram (Fig. 2.8). The geometric locus of ω points situated in the interior of the $M N P Q$ parallelogram so that $\widehat{\omega Q M} \equiv \widehat{\omega N M}$ is:
a) if $c \neq-\frac{b^{2}}{a}$, the hyperbola

$$
\begin{equation*}
(H) \quad b x^{2}-b y^{2}-(a+c) x y+b^{3}+a b c=0 \tag{2.4}
\end{equation*}
$$

intersected with the interior of the $M N P Q$ parallelogram;
b) if $c=-\frac{b^{2}}{a}$, the lines

$$
\begin{equation*}
d^{\prime}: y=\frac{b}{a} x \quad \text { and } \quad d^{\prime \prime}: y=-\frac{a}{b} x \tag{2.5}
\end{equation*}
$$

intersected with the interior of the $M N P Q$ parallelogram. In this case, $M N P Q$ becomes a rhomb.
Proof. Let ω be a point with the coordinates $\omega(x, y)$, we note $\alpha=m(\widehat{\omega Q M})=$ $m(\widehat{\omega N M}), \beta=m(\widehat{\omega Q P})=m(\widehat{\omega N P})$ and by $m_{\omega N}$ the slope of the ωN line. Then

$$
\begin{equation*}
m_{\omega N}=\operatorname{tg} \alpha=\frac{b-y}{a-x} \tag{2.6}
\end{equation*}
$$

$m_{\omega Q}=\operatorname{tg} \beta=\frac{y+b}{x+a}$ and $m_{M Q}=\operatorname{tg}(\alpha+\beta)=\frac{2 b}{c+a}$. Taking the last two equalities into account, yield

$$
\operatorname{tg} \alpha=\operatorname{tg}((\alpha+\beta)-\beta)=\frac{\operatorname{tg}(\alpha+\beta)-\operatorname{tg} \beta}{1+\operatorname{tg}(\alpha+\beta) \operatorname{tg} \beta}=\frac{\frac{2 b}{c+a}-\frac{y+b}{x+a}}{1+\frac{2 b}{c+a} \cdot \frac{y+b}{x+a}},
$$

from where

$$
\begin{equation*}
\operatorname{tg} \alpha=\frac{2 b x-c y-b c-a y+a b}{a^{2}+a c+a x+c x+2 b y+2 b^{2}} \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7), after calculus yield (2.4).
If $a_{11} x^{2}+2 a_{12} x y+a_{22} y^{2}+2 a_{13} x+2 a_{23} y+a_{33}=0$ is the general equation of the conic, then $\delta=a_{11} a_{22}-a_{12}^{2}=-b^{2}-\left(\frac{a+c}{2}\right)^{2}<0$ because $b>0$ and

$$
\begin{aligned}
\Delta & =\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{12} & a_{22} & a_{23} \\
a_{13} & a_{23} & a_{33}
\end{array}\right|=\left|\begin{array}{ccc}
b & -\frac{a+c}{2} & 0 \\
-\frac{a+c}{2} & -b & 0 \\
0 & 0 & b^{3}+a b c
\end{array}\right| \\
& =-b\left(b^{2}+a c\right)\left(b^{2}+\left(\frac{a+c}{2}\right)^{2}\right)
\end{aligned}
$$

Because $a>0, b>0$, then $D=0$ if and only if $b^{2}+a c=0$, which is equivalent to $c=-\frac{b^{2}}{a}$. So, if $c \neq-\frac{b^{2}}{a}$ it results that $\Delta \neq 0$ and (2.4) is
a hyperbola. If $c=-\frac{b^{2}}{a}$ then (2.4) becomes $b x^{2}-b y^{2}-\left(a-\frac{b^{2}}{a}\right) x y=0$, which is equivalent to $a b x^{2}-\left(a^{2}-b^{2}\right) x y-a b y^{2}=0$, equivalent to $(a x+$ $b y)(b x-a y)=0$, which yields (2.5). In this case, where $c=-\frac{b^{2}}{a}$, we have that $M N \equiv M Q \equiv \frac{a^{2}+b^{2}}{a}$. Therefore the $M N P Q$ parallelogram becomes a rhomb.
Corollary 2.1. In the conditions of Theorem 2.2 , if $c \neq-\frac{b^{2}}{a}$, then the hyperbola (H) defined by (2.4) has the property that its center is $O(0,0)$.
Proof. If the equation of the hyperbola (H) is $f(x, y)=b x^{2}-b y^{2}-(a+c) x y+$ $b^{3}+a b c=0$, then its center can be determined by solving the following system $\left\{\begin{array}{l}f_{x}^{\prime}(x, y)=0 \\ f_{y}^{\prime}(x, y)=0 .\end{array}\right.$ We have $\left\{\begin{array}{r}2 b x-(a+c) y=0 \\ -2 b y-(a+c) x=0\end{array}\right.$, from where we obtain the solution $\left\{\begin{array}{l}x=0 \\ y=0\end{array}\right.$, which means that the center of the hyperbola (H) is $O(0,0)$.

Remark 2.2. It can be easily checked that the vertices of the $M N P Q$ parallelogram belong to the hyperbola given by (2.4). The points N and Q are situated on the line given by $y=\frac{b}{a} x$. If $c=-\frac{b^{2}}{a}$, then the points M and P are situated on the line given by $y=-\frac{a}{b} x$.
Remark 2.3. The point S is situated at the intersection of lines $M S$ of equation $x=c$ and $P S$ of equation $y=-\frac{a+c}{2 b} x+\frac{(a+c) c}{2 b}-b$, so S has the coordinates $S\left(c,-\frac{a c+c^{2}+b^{2}}{b}\right)$. Analogously, the point T has the coordinates nates
$T\left(-c, \frac{a c+c^{2}+b^{2}}{b}\right)$. It is easily verified that the points S and T are situated on the hyperbola (H) given by (2.4) if $c \neq-\frac{b^{2}}{a}$, and are situated on the line d^{\prime} given by (2.5) if $c=-\frac{b^{2}}{a}$.
Theorem 2.3. Let $M N P Q$ be a given parallelogram, $M(c, b), N(a, b)$, $P(-c,-b), Q(-a,-b), a>0, b>0, c<a,-c \leq a, M S \perp Q P, P T \perp M N$, $M T \perp P N, P S \perp M Q, \omega$ a point situated in the interior of the $M N P Q$ parallelogram, so that $\omega M \perp A B, \omega N \perp B C, \omega P \perp C D$ and $\omega Q \perp D A$.
(i) If $c<0$, then the $A B C D$ quadrilateral is cyclic and ω is the center of the circumscribed circle of the $A B C D$ quadrilateral if and only if:
a) if $c \neq-\frac{b^{2}}{a}, \omega$ belongs to the intersection between the hyperbola (H) determined by (2.4) and the interior of MSPT parallelogram;
b) if $c=-\frac{b^{2}}{a}, \omega$ belongs to $(M P) \cup[T S]$.
(ii) If $c \geq 0$, then there are not any ω points in the interior of MSPT parallelogram.

Proof. In Case I, taking Lemma 2.1, Theorem 2.1, Lemma 2.3, Remark 2.3 and Theorem 2.2 into account, yields the demonstration.

Case II. Let $A B C D$ be a cyclic quadrilateral and $M N P Q$ the corresponding Varignon parallelogram. We will study if ω, the center of the circumscribed circle of the $A B C D$ quadrilateral, can be situated on a side of $M N P Q$ parallelogram.

For example, if ω is situated in the interior of the $P N$ side (Fig. 2.9), then $\omega N \perp B C$ and $\omega P \perp D C$, which is a contradiction. Therefore ω cannot be situated on the open sides of $M N P Q$ parallelogram.

We will study if ω can be situated in on one of the vertices of the $M N P Q$ parallelogram, for instance P (Fig. 2.10) and we note $A C \cap B D=\{S\}$, $A C \cap P N=\{T\}, B D \cap P Q=\{V\}$.
We have that $P N, P Q$ are median lines in $B D C$ triangle and $A D C$ respectively, which yield $P N \| B D$ and $P Q \| A C$, from where $P T S V$ is parallelogram, so $\widehat{Q P N} \equiv \widehat{D S C}$. But $m(\widehat{D S C})=\frac{m(\widehat{A B})+m(\widehat{C D})}{2}$ and since $m(\widehat{C D})=180^{\circ}$, yields $m(\widehat{Q P N})>90^{\circ}$, which means $\widehat{Q P N}$ is an obtuse. Therefore, the center of the circumscribed circle of the $A B C D$ quadrilateral can only be situated in a vertex of the Varignon parallelogram, if the angle corresponding to this vertex is obtuse angle. The side of $A B C D$ quadrilateral corresponding to this vertex is diameter of the circumscribed circle of the $A B C D$ quadrilateral (Fig. 2.10).

Fig. 2.9

Fig. 2.10

Similar remarks from the Case I, if $d_{1} \perp M N, M \in d_{1}$, we have a solution if and only if $d_{1} \cap[Q P \neq \emptyset$. Taking Lemma 2.3 into account, we have a solution if and only if $c<0$ (see Fig. 2.8).

Lemma 2.4. Let $M N P Q$ be a parallelogram, $m(\widehat{Q P N})>90^{\circ}, P M \perp A B$, $P N \perp B C, P Q \perp D A, m(\widehat{Q M P})+m(\widehat{Q P D})=90^{\circ}, Q \in(A D)$. If D, P, C are collinear, then the $A B C D$ quadrilateral is cyclic and the center of the circumscribed circle of $A B C D$ is P.

Proof. The $P Q A M$ and $P M B N$ quadrilaterals are cyclic (Fig. 2.11), that yields

$$
\begin{align*}
& \widehat{P A Q} \equiv \widehat{P M Q}, \tag{2.8}\\
& \widehat{P Q M} \equiv \widehat{P A M} \tag{2.9}
\end{align*}
$$

and respectively

$$
\begin{equation*}
\widehat{P N M} \equiv \widehat{P B M} \tag{2.10}
\end{equation*}
$$

But $M N P Q$ is parallelogram, therefore $\widehat{P Q M} \equiv \widehat{P N M}$ and taking (2.9) and (2.10) into account yields $\widehat{P A M} \equiv \widehat{P B M}$, which means that the $P A B$ triangle is isosceles, from where

Fig. 2.11

$$
\begin{equation*}
P A \equiv P B \tag{2.11}
\end{equation*}
$$

In the $D P Q$ triangle, $m(\widehat{Q D P})+m(\widehat{Q P D})=90^{\circ}$ and taking the hypothesis into account, yields

$$
\begin{equation*}
\widehat{P M Q} \equiv \widehat{Q D P} \tag{2.12}
\end{equation*}
$$

From (2.8) and (2.12), it results that $\widehat{P A Q} \equiv \widehat{Q D P}$, so the triangle $P A D$ is isosceles, from where

$$
\begin{equation*}
P A \equiv P D \tag{2.13}
\end{equation*}
$$

From (2.11) and (2.13) it results that the points D, A, B are situated on a circle \mathcal{C} of center P and radius $P A$. Let $\mathcal{C} \cap B C=\left\{B, C^{\prime}\right\}$ and because $A, D, B, C^{\prime} \in \mathcal{C}$ and $P Q \perp D A, P M \perp A B, P N \perp B C$, yields that the points A and D are symmetrical to Q, A and B are symmetrical to M and B and C^{\prime} are symmetrical to N. According to Theorem 1.2 , yields points D, P, C^{\prime} are collinear and symmetrical to P. But $C, C^{\prime} \in B C, C, C^{\prime} \in D P$, the fact that the points D, P, C^{\prime} and D, P, C are collinear, means that C and C^{\prime} are coincident points.
Remark 2.4. In Lemma 2.4 we have proved that for a $M N P Q$ parallelogram with $m(\widehat{Q P N})>90^{\circ}$, there is a cyclic quadrilateral $A B C D$, uniquely determinated, so that P is the center of the circumscribed circle of the $A B C D$ quadrilateral, and $M N P Q$ is the Varignon parallelogram corresponding to the $A B C D$ quadrilateral. Analogously, the point M has got the same property.
Theorem 2.4. Let $M N P Q$ be a given parallelogram, $M(c, b), N(a, b)$, $P(-c,-b), Q(-a,-b), a>0, b>0, c<a,-c \leq a$.
(i) If $c<0$, then there exists an unique cyclic quadrilateral $A B C D$ so that P is the center of the circumscribed circle of the $A B C D$ quadrilateral and $M N P Q$ is the Varignon parallelogram corresponding to the $A B C D$ quadrilateral. The point M has got the same property and the points P and M are situated on the (H) hyperbola determined by (2.4) if $c \neq-\frac{b^{2}}{a}$ and $P, M \in d^{\prime \prime}$ if $c=-\frac{b^{2}}{a}$.
(ii) If $c \geq 0$, then the points P, and respectively M, cannot be the center of the circumscribed circle of $A B C D$ quadrilateral, which means that $M N P Q$ is Varignon parallelogram corresponding to the $A B C D$ quadrilateral.

Proof. Taking Lemma 2.4 and remarks above into account, yields the demonstration.

Case III. Let $A B C D$ be a cyclic quadrilateral and $M N P Q$ the Varignon parallelogram corresponding to the $A B C D$ quadrilateral. We will study if ω, the center of the circumscribed circle of the $A B C D$ quadrilateral can be situated in the exterior of the $M N P Q$ parallelogram.

Let ω be a point situated in the exterior of the parallelogram $M N P Q$ and $A C \cap B D=\{S\}, A C \cap P N=\{T\}, B D \cap P Q=\{V\}$ (Fig. 2.12). Because $\omega P \perp D C$ and ω is situated in the exterior of the $M N P Q$ parallelogram, it results that ω is situated in the exterior of the $A B C D$ quadrilateral. Because $P T S V$ is a parallelogram, we have that $\widehat{Q P N} \equiv \widehat{D S C}$. But $m(\widehat{D S C})=$ $\frac{m(\widehat{A B})+m(\widehat{C D})}{\frac{2}{2}}$ and since $m(\overparen{C D})>180^{\circ}$, yields $m\left(\widehat{Q P N}>90^{\circ}\right.$, which
means $\widehat{Q P N}$ is obtuse angle.

Fig. 2.12
Lemma 2.5. Let $A B C D$ be a cyclic quadrilateral, ω the center of the circumscribed circle of the $A B C D$ quadrilateral, $M N P Q$ the Varignon parallelogram corresponding to the $A B C D$ quadrilateral, $M \in A B, N \in B C$, $P \in C D$ and $Q \in D A$. If ω is situated in the exterior of the $M N P Q$ parallelogram and $m(\widehat{Q P N})>90^{\circ}$, then
a) $\widehat{\omega Q P} \equiv \widehat{\omega N P}$
and
b) $\omega Q \cap$ Int $M N P Q=\omega N \cap$ Int $M N P Q=\emptyset$.

Proof. Because $\omega P \perp D C, \omega Q \perp A D, \omega N \perp B C$ we conclude that the $\omega D Q P$ and the $\omega C N P$ quadrilaterals are cyclic, from where $\widehat{\omega D P} \equiv \widehat{\omega Q P}$ and $\widehat{\omega C P} \equiv \widehat{\omega N P}$ (Fig. 2.12). But the $\omega D C$ triangle is isosceles, therefore $\widehat{\omega D P} \equiv \widehat{\omega C P}$ and taking the previous relations into account, yield part a) from this lemma.

Fig. 2.13

If $\omega Q \cap$ Int $M N P Q \neq \emptyset$ and $\omega N \cap$ Int $M N P Q \neq \emptyset$, then $\omega \in$ Int $M N P Q$ which is a contradiction.
Let $\omega Q \cap$ Int $M N P Q=\emptyset$ and $\omega N \cap$ Int $M N P Q \neq \emptyset$ (Fig. 2.13). Taking a) into account, yields $\widehat{\omega Q P} \equiv \widehat{\omega N P}$, from where (2.14)

$$
m(\widehat{\omega N M})<n(\widehat{P N M})
$$

and
(2.15)

$$
m(\widehat{\omega Q M})>m(\widehat{P Q M}) .
$$

The $\omega N B M$ and the $\omega Q A M$ quadrilaterals are cyclic, therefore $\widehat{\omega N M} \equiv$ $\widehat{\omega B M}$ and $\widehat{\omega Q M} \equiv \widehat{\omega A M}$. But the $\omega A B$ triangle is isosceles, so $\widehat{\omega A M} \equiv$ $\widehat{\omega B M}$ and therefore we obtain

$$
\begin{equation*}
\widehat{\omega N M} \equiv \widehat{\omega Q M} . \tag{2.16}
\end{equation*}
$$

From (2.14)-(2.16) yield $m(\widehat{P Q M})<\omega(\widehat{P N M})$, which is a contradiction because $m(\widehat{P Q M})=m(\widehat{P N M})$. In conclusion, part b) takes place.

Lemma 2.6. Let $M N P Q$ be a parallelogram where $m(\widehat{Q P N})>90^{\circ}$, and ω is a point so that $\omega Q \cap$ Int $M N P Q=\omega N \cap$ Int $M N P Q=\emptyset$ and $\widehat{\omega Q P} \equiv$ $\widehat{\omega N P}$. Therefore $m(\widehat{\omega M Q})+m(\widehat{\omega P Q})=180^{\circ}$.

Proof. In the triangle $\omega Q P$ and $\omega N P$, according to the law of sines (Fig. 2.12), we obtain $\frac{\sin \alpha}{\omega P}=\frac{\sin x}{\omega Q}$ and $\frac{\sin \alpha}{\omega P}=\frac{\sin \left(360^{\circ}-b-x\right)}{\omega N}$, where we note $m(\widehat{\omega Q P})=\alpha, m(\widehat{Q P N})=b$ and $m(\widehat{\omega P Q})=x$. From the relations above, yield

$$
\begin{equation*}
\frac{-\sin (b+x)}{\sin x}=\frac{\omega N}{\omega Q} . \tag{2.17}
\end{equation*}
$$

In the triangles $\omega Q P$ and $\omega N P$, according to the law of sines, we obtain $\frac{\sin y}{\omega Q}=\frac{\sin (\alpha+a)}{\omega M}$ and $\frac{\sin (b-y)}{\omega N}=\frac{\sin (\alpha+a)}{\omega M}$, where $m(\widehat{\omega M Q})=y$ and $m(\widehat{P Q M})=a$. From the last previous equalities, we obtain that

$$
\begin{equation*}
\frac{\sin (b-y)}{\sin y}=\frac{\omega N}{\omega Q} \tag{2.18}
\end{equation*}
$$

From (2.17) and (2.18), we have that $\frac{-\sin (b+x)}{\sin x}=\frac{\sin (b-y)}{\sin y}$, equivalent to $-\sin y \sin b \cos x-\sin y \sin x \cos b=\sin x \sin b \cos y-\sin x \sin y \cos b$, equivalent to $\sin b \sin (x+y)=0$. Because $b \in\left(0^{\circ}, 180^{\circ}\right)$, so $\sin b \neq 0$, it results that $\sin (x+y)=0$, from where $x+y=180^{\circ}$, which needs to be proved.

Theorem 2.5. Let ω be a point situated in the exterior of the parallelogram $M N P Q$, so that $\omega Q \cap \operatorname{Int} M N P Q=\omega N \cap$ Int $M N P Q=\emptyset$ and $\widehat{\omega Q P}=\widehat{\omega N P}$. If $m(\widehat{Q P N})>90^{\circ}, A B \perp \omega M, B C \perp \omega N, C D \perp \omega P$ and $D S \perp \omega Q$, then $A B C D$ is a cyclic quadrilateral and ω is the center of the circumscribed circle of the $A B C D$ quadrilateral.

Proof. From $A B \perp \omega M$ and $D A \perp \omega Q$, we obtain that the $\omega M A Q$ quadrilateral is cyclic (Fig. 2.14), from where

Fig. 2.14

$$
\begin{equation*}
\widehat{\omega A M} \equiv \widehat{\omega Q M} \tag{2.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\widehat{\omega M Q} \equiv \widehat{\omega A Q} \tag{2.20}
\end{equation*}
$$

The quadrilateral $\omega M B N$ is cyclic, therefore

$$
\begin{equation*}
\widehat{\omega B M} \equiv \widehat{\omega N M} \tag{2.21}
\end{equation*}
$$

Because $M N P Q$ is a parallelogram, so $\widehat{P Q M} \equiv \widehat{P N M}$ and from the hypothesis we have $\widehat{\omega Q P} \equiv \widehat{\omega N P}$, therefore $\widehat{\omega Q M} \equiv \widehat{\omega N M}$. Taking (2.19) and (2.21) into account, we obtain that $\widehat{\omega A M} \equiv \widehat{\omega B N}$, so the triangle $\omega A B$ is isosceles, so

$$
\begin{equation*}
\omega A \equiv \omega B \tag{2.22}
\end{equation*}
$$

The quadrilateral $\omega D Q P$ is cyclic, which means that

$$
\begin{equation*}
m(\widehat{\omega D Q})+m(\widehat{\omega P Q})=180^{\circ} \tag{2.23}
\end{equation*}
$$

According to Lemma 2.6 we have that $m(\widehat{\omega M Q})+m(\widehat{\omega P Q})=180^{\circ}$ and taking (2.20) and (2.23) into account, yield $\widehat{\omega A Q} \equiv \widehat{\omega D Q}$, therefore the triangle $\omega A D$ is isosceles, so

$$
\begin{equation*}
\omega A \equiv \omega D \tag{2.24}
\end{equation*}
$$

The quadrilaterals $\omega D Q P$ and $\omega C N P$ are cyclic, therefore $\widehat{\omega Q P} \equiv \widehat{\omega D P}$ and $\widehat{\omega N P} \equiv \widehat{\omega C P}$. But, from the hypothesis we have $\widehat{\omega Q P} \equiv \widehat{\omega N P}$, and then from the equalities above we deduce that $\widehat{\omega D P} \equiv \widehat{\omega C P}$. Therefore the triangle $\omega C D$ is isosceles, from where

$$
\begin{equation*}
\omega D \equiv \omega C \tag{2.25}
\end{equation*}
$$

From (2.16), (2.24) and (2.25), we have that the $A B C D$ quadrilateral is cyclic and ω is the center of the circumscribed circle of the $A B C D$ quadrilateral.

Remark 2.5. In the previous conditions, if $\widehat{\omega Q D} \equiv \widehat{\omega N D}$ then we obtain that $\widehat{\omega Q M} \equiv \widehat{\omega N M}$, because $M N P Q$ is a parallelogram.

According to the ideas from Case I, we have the marked areas in Fig. 2.15 for $c<0$ and in Fig. 2.16 for $c \geq 0$ respectively.

Fig. 2.15

Fig. 2.16

In this case, let $M N P Q$ be a parallelogram and its center the origin of the axis system (Fig. 2.17), where $a>0, b>0$ and $c<a$.

Fig. 2.17
Theorem 2.6. Let $M N P Q$ be a given parallelogram with $m(\widehat{Q P N})>90^{\circ}$ (Fig. 2.17). The geometric locus of ω points situated in the exterior of the parallelogram $M N P Q$ so that $\omega Q \cap \operatorname{Int} M N P Q=\omega N \cap \operatorname{Int} M N P Q=\emptyset$ and $\widehat{\omega Q P} \equiv \widehat{\omega N P}$ is:
a) if $c \neq-\frac{b^{2}}{a}$, the hyperbola

$$
\begin{equation*}
(H) \quad b x^{2}-b y^{2}-(a+c) x y+b^{3}+a b c=0 \tag{2.26}
\end{equation*}
$$

intersected with the exterior of the parallelogram $M N P Q$;
b) if $c=-\frac{b^{2}}{a}$, the lines

$$
\begin{equation*}
d^{\prime}: y=\frac{b}{a} x \quad \text { and } \quad d^{\prime \prime}: y=-\frac{a}{b} x \tag{2.27}
\end{equation*}
$$

intersected with the exterior of the parallelogram $M N P Q$ (in this situation, $M N P Q$ becomes a rhomb).

Proof. Let $\omega(x, y)$ and we note $m(\widehat{\omega Q P})=m(\widehat{\omega N P})=\alpha$, the measures of the angles formed by the lines $\omega N, P N$ with $O x$ axis by β, and γ respectively (Fig. 2.17).
We have that $m_{\omega Q}=\operatorname{tg}\left(180^{\circ}-\alpha\right)=\frac{y+b}{x+a}$, from where

$$
\begin{equation*}
\operatorname{tg} \alpha=-\frac{y+b}{x+a} \tag{2.28}
\end{equation*}
$$

On the other hand, $m_{P N}=\operatorname{tg} \gamma=\frac{2 b}{a+c}$ and $m_{\omega N}=\operatorname{tg} \beta=\frac{y-b}{x-a}$. Then $\alpha=\beta-\gamma$, yields $\operatorname{tg} \alpha=\operatorname{tg}(\beta-\gamma)$, equivalent to

$$
\operatorname{tg} \alpha=\frac{\operatorname{tg} \beta-\operatorname{tg} \gamma}{1+\operatorname{tg} \beta \operatorname{tg} \gamma}=\frac{\frac{y-b}{x-a}-\frac{2 b}{a+c}}{1+\frac{y-b}{x-a} \cdot \frac{2 b}{a+c}}
$$

from where

$$
\begin{equation*}
\operatorname{tg} \alpha=\frac{a y-a b+c y-2 b x+b c}{a x-a c+c x-c^{2}+2 b y-2 b^{2}} . \tag{2.29}
\end{equation*}
$$

From (2.28) and (2.29) after calculus, we obtain (2.26).
Remark 2.6. The point T_{1} is situated at the intersection of lines $Q U$ of equation $x=-a$ and $S_{1} N$ of equation $y=-\frac{a+c}{2 b} x+\frac{(a+c) a}{2 b}+b$, so T_{1} has the coordinates $T_{1}\left(-a, \frac{a c+a^{2}+b^{2}}{b}\right)$ and $T^{\prime}\left(a,-\frac{a c+a^{2}+b^{2}}{b}\right)$, $V\left(-c, \frac{a c+c^{2}+b^{2}}{b}\right), V^{\prime}\left(c,-\frac{a c+c^{2}+b^{2}}{b}\right)$ analogously. It is easily verified that the points $T_{1}, T^{\prime}, V, V^{\prime}$ are situated on the hyperbola (H) given by (2.26) if $c \neq-\frac{b^{2}}{a}$. If $c=-\frac{b^{2}}{a}$, then the points $V, V^{\prime} \in d^{\prime}$ and $T_{1}, T^{\prime} \in d^{\prime \prime}$.

In the following, see the ideas that led to the proof of Theorem 2.2.
Theorem 2.7. Let $M N P Q$ be a given parallelogram, $M(c, b), N(a, b)$, $P(-c,-b), Q(-a,-b), a>0, b>0, c<a, c<0, M S_{1} \perp M N, T_{1} U \perp$ $M N, M U \perp M Q, T_{1} S_{1} \perp M Q, N \in T_{1} S_{1}, P S^{\prime} \perp Q P, U^{\prime} T^{\prime} \perp Q P$, $P U^{\prime} \perp P N, S^{\prime} T^{\prime} \perp P N, Q \in S^{\prime} T^{\prime}$ (Fig. 2.15), ω a point situated in the exterior of the $M N P Q$ parallelogram so that $\omega M \perp A B, \omega N \perp B C$, $\omega P \perp C D$ and $\omega Q \perp D A$.
The $A B C D$ quadrilateral is cyclic and ω is the center of the circumscribed circle of the quadrilateral $A B C D$ if and only if:
a) if $c \neq-\frac{b^{2}}{a}, \omega$ belongs to the intersection between the hyperbola (H) given by (2.26) and the set $\left[M S_{1} T_{1} U\right] \cup\left[P S^{\prime} T^{\prime} U^{\prime}\right] \backslash\{M, P\}$ (Fig. 2.15);
b) if $c=-\frac{b^{2}}{a}, \omega$ belongs to set $\left[T_{1} M\right) \cup\left(P T^{\prime}\right]$ (Fig. 2.15).

Proof. Taking Lemma 2.5, Theorem 2.5, Lemma 2.6, Remark 2.5, Remark 2.6 and Theorem 2.6 into account, yield the demonstration.

Fig. 2.18

Fig. 2.19

Theorem 2.8. Let $M N P Q$ be a given parallelogram, $M(c, b), N(a, b)$, $P(-c,-b), Q(-a,-b), a>0, b>0, c<a,-c \leq a, c \geq 0, S_{1} V \perp M N$, $T_{1} U \perp M N, U V \perp M Q, T_{1} S_{1} \perp M Q, N \in T_{1} S_{1}, M \in U V, Q \in T_{1} U$, $P \in V S_{1}, S^{\prime} V^{\prime} \perp Q P, T^{\prime} U^{\prime} \perp Q P, U^{\prime} V^{\prime} \perp P N, T^{\prime} S^{\prime} \perp P N, Q \in T^{\prime} S^{\prime}$, $P \in U^{\prime} V^{\prime}, N \in T^{\prime} U^{\prime}, M \in V^{\prime} S^{\prime}$ (Fig. 2.15), and ω a point situated in the exterior of the $M N P Q$ parallelogram, $\omega M \perp A B, \omega N \perp B C, \omega P \perp C D$ and $\omega Q \perp D A$.
The $A B C D$ quadrilateral is cyclic and ω is the center of the circumscribed circle of the $A B C D$ quadrilateral if and only if
a) if $c \neq-\frac{b^{2}}{a}, \omega$ belongs to the intersection between the hyperbola (H) given by (2.26) and the set $\left[S_{1} T_{1} U V\right] \cup\left[S^{\prime} T^{\prime} U^{\prime} V^{\prime}\right]$ (Fig. 2.16);
b) if $c=-\frac{b^{2}}{a} \omega$ belongs to the set $\left[T_{1} V\right] \cup\left[V^{\prime} T^{\prime}\right]$ (Fig. 2.16).

Proof. From Lemma 2.5, Theorem 2.5, Lemma 2.6, Remark 2.5, Remark 2.6 and Theorem 2.6 yield the proof.

In the end, we withdraw the conclusion in Theorem 2.9.
Theorem 2.9. Let $M N P Q$ be a give parallelogram, $M(c, b), N(a, b)$, $P(-c,-b), Q(-a,-b), a>0, b>0, c<a,-c \leq a$, and ω a point situated in the plane, $\omega M \perp A B, \omega N \perp B C, \omega P \perp C D$ and $\omega Q \perp D A$.
(i) Let $c<0$ and $M S \perp P Q, P T \perp P Q, S, T \in \operatorname{Int} M N P Q, M S_{1} \perp$ $M N, Q T_{1} \perp M N, P S^{\prime} \perp P Q, N T^{\prime} \perp P Q, M U \perp M Q, Q S^{\prime} \perp M Q$, $P U^{\prime} \perp P N, N S_{1} \perp P N$ (see Fig. 2.18).

Then the $A B C D$ quadrilateral is cyclic and ω is the center of the circumscribed circle of the $A B C D$ quadrilateral if and only if:
a) if $c \neq-\frac{b^{2}}{a}, \omega$ belongs to the set determinated by the intersection between the hyperbola (H) given by (2.4) and $[M S P T] \cup\left[M S_{1} T_{1} U\right] \cup$ $\left[P S^{\prime} T^{\prime} U^{\prime}\right]$;
b) if $c=-\frac{b^{2}}{a} \omega$ belongs to the set $\left[T_{1} T^{\prime}\right] \cup[S T]$ (see Fig. 2.19).
(ii) Let $c \geq 0$ and $T_{1} U \perp P Q, S_{1} V \perp$ $P Q, \quad S^{\prime} V^{\prime} \perp M N, T^{\prime} U^{\prime} \perp M N$, $U V \perp P N, T_{1} S_{1} \perp P N, S^{\prime} T^{\prime} \perp P N$, $U^{\prime} V^{\prime} \perp P N$ (see Fig. 2.20).
Then the $A B C D$ quadrilateral is cyclic and ω is the center of the circumscribed circle of the $A B C D$ quadrilateral if and only if:
a) if $c \neq-\frac{b^{2}}{a}, \omega$ belongs to the intersection between hyperbola (H) given by (2.4) and the $\left[V S_{1} T_{1} U\right] \cup$ $\left[V^{\prime} S^{\prime} T^{\prime} U^{\prime}\right]$.
b) if $c=-\frac{b^{2}}{a}, \omega$ belongs to the set $\left[T_{1} V\right] \cup\left[S^{\prime} T^{\prime}\right]$.

Fig. 2.20

In conclusion, for $c \neq-\frac{b^{2}}{a}, c<0$, the hyperbola (H) given by (2.4) has got a branch that goes through the points T_{1}, M, S, Q and another branch goes through the points N, T, P, T^{\prime}. For $c \geq 0$, a branch goes through the points T_{1}, V, M, N, and another branch goes through the points $Q, P, S^{\prime}, T^{\prime}$.

Finally, we give the method of construction a figure determinated by a point of geometrical locus.

Let $M N P Q$ be a given Varignon's parallelogram and ω a point of the geometrical locus. The perpendicular in ω to ωM intersects the perpendicular in ω to ωQ in A, and similarly are obtained the points B, C, D (see Fig. 2.1). So, we get the cyclic quadrilateral $A B C D$, where ω is the center of the circumscribed circle.

References

[1] Bataille, Michel, Cyclic Quadrilaterals with Prescribed Varignon Parallelogram, Forum Geometricorum, 7 (2007), 199-206.
[2] Golovina, L.I. and Iaglom, I.M., Induction in geometry, Ed. Tehnică, Bucureşti, 1964 (in Romanian).
[3] Kiss, S.N. and Pop, O.T., On the Four Concurrent Circles, Global Journal of Advanced Research on Classical and Modern Geometries, 3 (2014), Issue 2, 91-101.
[4] Pop, O.T., Minculete, N. and Bencze, M., An Introduction to Quadrilateral Geometry, Ed. Did. Ped., Bucureşti, 2013.
[5] Pop, O.T. and Kiss, S.N., About a construction problem, International Journal of Geometry 3 (2014), No. 2, 14-19.

NATIONAL COLLEGE "MIHAI EMINESCU"
5 MIHAI EMINESCU STREET
SATU MARE, ROMANIA
e-mail: popovidiutiberiu@gmail.com

"CONSTANTIN BRÂNCUŞ" TECHNOLOGY LYCEUM
SATU MARE, ROMANIA
e-mail: d.sandor.kiss@gmail.com
"TRANSILVANIA" UNIVERSITY OF BRAŞOV
500091 IULIU MANIU STREET
BRAŞOV, ROMANIA
e-mail: minculeten@yahoo.com

[^0]: 2010 Mathematics Subject Classification. 51M04, 51M15.
 Key words and phrases. Cyclic quadrilaterals, Varignon parallelogram.
 Received: 4.03.2015. In revised form: 4.04.2015. Accepted: 18.11.2015.

