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Cyclic quadrilaterals corresponding to a given
Varignon parallelogram

OVIDIU T. POP, SÁNDOR NAGYDOBAI KISS and NICUŞOR
MINCULETE

Abstract. In this paper, we will study the cyclic quadrilaterals that
have as a Varignon parallelogram any given parallelogram.

1. Introduction

In this article we obtain the results from [1], albeit through distinct and
divergent methods. The description of the geometric locus featured in this
article is more detailed. The following result is well-known.

Theorem 1.1 (Varignon Theorem, 1731). Let ABCD be a quadrilateral.

If M,N,P,Q are the midpoints of the sides AB, BC, CD, and DA respec-

tively, then MNPQ is a parallelogram and 2T [MNPQ] = T [ABCD], where
T [ABCD] is the area of quadrilateral ABCD.

In [5] one reciprocal theorem of Theorem 1.1 is demonstrated.

Theorem 1.2. Given non collinear points so that MNPQ is a parallelogram

and considering an arbitrary point A in the plane of MNPQ, there exist

B,C,D so that, M,N,P,Q are midpoints of sides AB, BC, CD, and DA

respectively.

In this paper, we will consider convex quadrilaterals. If ABCD is a convex
quadrilateral, M,N,P,Q are the midpoints of the sides AB, BC, CD and
DA respectively, then the Varignon parallelogram corresponding to ABCD

quadrilateral is convex. The MNPQ parallelogram, except for the points
M,N,P,Q is situated in the interior of ABCD quadrilateral.

According to Theorem 1.1, the quadrilateralMNPQ is call the Varignon’s
parallelogram corresponding to ABCD quadrilateral.

Theorem 1.2 implies that given MNPQ parallelogram there is an infinite
number of quadrilaterals that have as a Varignon parallelogram the MNPQ

parallelogram.
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The following result is known (see [4]).

Theorem 1.3. Let ABCD be a cyclic quadrilateral, ω the center of the

circumcircle of ABCD. If MNPQ is the Varignon’s parallelogram corre-

sponding to ABCD quadrilateral, then ωM ⊥ AB, ωN ⊥ BC, ωP ⊥ CD

and ωQ ⊥ DA.

In this paper, we will solve the following problem: given the MNPQ

parallelogram, we will determine the geometrical locus of the points ω with
the property that there exists a cyclic quadrilateral ABCD, the centre of
the circumscribed circle of the ABCD quadrilateral is ω and MNPQ is the
Varignon parallelogram corresponding to ABCD quadrilateral.

2. Main results

Case I. Let MNPQ be a parallelogram corresponding to the cyclic
quadrilateral ABCD and we suppose that ω, the centre of the circumscribed
circle of the ABCD quadrilateral, is situated in the interior of the MNPQ

parallelogram.

Lemma 2.1. Let ABCD be a cyclic quadrilateral, ω the centre of the cir-

cumscribed circle of the ABCD quadrilateral, MNPQ the corresponding

Varignon parallelogram to the ABCD quadrilateral, M ∈ AB, N ∈ BC,

P ∈ CD and Q ∈ DA. If ω is situated in the interior of the MNPQ

parallelogram, then ÷ωQM ≡ ÷ωNM and the analogs.

Proof. The quadrilaterals ωQAM and ωMBN are cyclic (Fig. 2.1), there-

fore ÷ωQM ≡ ÷ωAM and ÷ωNM ≡ ÷ωBM respectively. But the triangle ωAB

is isosceles, therefore ÷ωAM ≡ ÷ωBM and according to all the congruences
above, yields the conclusion of the lemma. �

Next, we prove the existence of a point ω in an arbitrary parallelogram

MNPQ such that ÷ωQM ≡ ÷ωNM .

Proposition 2.1. There exist a point ω situated in the interior of the par-

allelogram MNPQ such that ÷ωQM ≡ ÷ωNM .

Proof. We construct the straightline NT ′, where T ′ ∈ (MQ) and T ′U‖MN ,

U ∈ (NP ), implies ◊�T ′NM ≡ ÷NT ′U . If {V } = T ′N ∩ MU and let V ′ be
the isogonal conjugate of a point V with respect to a triangle MT ′U is
constructed by reflecting the line T ′V about the angle bisector of T ′, then
◊�MT ′V ′ ≡ ÷V T ′U . Finally, we construct the parallel through Q to the line

T ′V ′ which intersects the line T ′N in ω. Therefore, we have ÷ωQM ≡ ÷ωNM .
Hence, for every straightline NT ′, with T ′ ∈ (MQ), there is a single point

ω such that ÷ωQM ≡ ÷ωNM . �

Lemma 2.2. If ω is a point situated in the interior of the MNPQ paral-

lelogram and ÷ωQM ≡ ÷ωNM , then ÷ωMN ≡÷ωPN .

Proof. We note m(÷ωQM) = α, m(◊�QMN ) = a, m(÷ωMN) = x, m(÷ωPN) =
y, where α, a, x, y ∈ (0◦, 180◦). We have to prove that x = y (Fig. 2.2).
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In the triangles MQω and MNω, according to the sine theorem, yields

sin÷ωQM

ωM
=

sin÷QMω

ωQ
and

sin÷ωNM

ωM
=

sin÷ωMN

ωN
, or

sinα

ωM
=

sin(a− x)

ωQ

and
sinα

ωM
=

sinx

ωN
, from where

sin(a− x)

sinx
=

ωQ

ωN
, equivalent to

(2.1) sin a ctg x− cos a =
ωQ

ωN
.

Taking that m(’ωQP ) = m(÷ωNP ) = 180◦ − a− α into account, analogously
we obtain that

(2.2) sin a ctg y − cos a =
ωQ

ωN
.

From (2.1) and (2.2) yields that sin a·ctg x−cos a = sin a·ctg y−cos a, equiv-
alent to ctg x = ctg y. Because x, y ∈ (0, 180◦), according to the previous
equality, we obtain that x = y. �

Theorem 2.1. Let ω be a point situated in the interior of MNPQ paral-

lelogram so that ÷ωQM ≡ ÷ωNM . If AB ⊥ ωM , BC ⊥ ωN , CD ⊥ ωP and

DA ⊥ ωQ, then ABCD is a cyclic quadrilateral and ω is the center of the

circumscribed circle of the ABCD quadrilateral.

Proof. Because ÷ωQM ≡ ÷ωNM , according to Lemma 2.2 yields ÷ωMN ≡
÷ωPN . But MNPQ is a parallelogram, which means that ’ωQP ≡ ÷ωNP .
From AB ⊥ ωM , DA ⊥ ωQ and BC ⊥ ωN (Fig. 2.3), it results that the

quadrilaterals ωQAM and ωMBN are cyclic, which means that ÷ωQM ≡
÷ωAM and ÷ωNM ≡ ÷ωBM . But ÷ωQM ≡ ÷ωNM and taken all the above

into consideration, yields ÷ωAM ≡ ÷ωBM . In conclusion, the triangle ωAB

is isosceles, therefore

(2.3) ωA ≡ ωB.
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Analogously, from ÷ωMN ≡÷ωPN and ’ωQP ≡ ÷QNP , it results that ωB ≡
ωC, ωD ≡ ωC respectively. Taking (2.3) into account, we obtain that
ωA ≡ ωB ≡ ωC ≡ ωD, therefore ABCD is a cyclic quadrilateral and ω is
the centre of the circumscribed circle of the ABCD quadrilateral. �

Remark 2.1. Theorem 2.1 is a reciprocal results to Lemma 2.1.

Let MNPQ be a Varignon’s parallelogram corresponding to the cyclic
quadrilateral ABCD. Let ω be the centre of the circumcircle of ABCD.
We suppose that ω is situated in the interior of the MNPQ parallelogram.
We will determine the plane area in which ω is situated.
Taking Theorem 1.3 and Lemma 2.1 into account, we have that ωM ⊥ AB,
ωN ⊥ BC, ωP ⊥ CD, ωQ ⊥ DA and [ABCD] ∩ [MNPQ] = [M,N,P,Q]
(see Fig. 2.1), where [ABCD] is the surface determined by the ABCD

quadrilateral and its interior.

If m(◊�MNP ) < 90◦, then any perpendiculars in N on ωN does not inter-

sect the interior of MNPQ parallelogram (Fig. 2.4). If m(◊�MNP ) ≥ 90◦,
we consider the following lines d1 ⊥ MN , d2 ⊥ MN , M ∈ d1, P ∈ d2,
d3 ⊥ MQ, d4 ⊥ MQ, M ∈ d3, P ∈ d4, d1 ∩ d4 = {S}, d3 ∩ d2 = {T}.
Let (d1N be the open half plane determinated by d1 line and the N point.
Because ω point is situated in the interior of the MNPQ parallelogram,
ωM ⊥ AB and MNPQ parallelogram, except for the points M,N,P,Q is
situated in the interior of ABCD quadrilateral, it results that ω ∈ (d1N ∩
(d3Q. Similarly ω ∈ (d2Q ∩ (d4N . The surface we are searching for is
represented by the interior of the MSPT parallelogram (Fig. 2.4).
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T

Fig. 2.4
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Taking the previous remarks into account, we have a solution if and only
if d1 line intersects [QP ). We do not have a solution in a contrary case, then
c ≥ 0 (see Fig. 2.5).

If MNPQ is a rectangle, then its interior is convenient for ω point (Fig.
2.6) and if MNPQ is a rhomb, then the interior of the marked area from
Fig. 2.7 is convenient.

In the following, let MNPQ be a parallelogram, where its centre is the
origin of the axis system (Fig. 2.8), a > 0, b > 0 and c < a.

Lemma 2.3. Let MNPQ be a given parallelogram (see Fig. 2.8). Then

a) m(◊�QMN ) ≥ 90◦ ⇔ −c ≤ a.

b) If MM ′ ⊥ QP , M ′ ∈ QP , then M ′ ∈ [QP ) ⇔ −c ≤ a and c < 0.

y

M(c,b) N(a,b)

(x,y)

P(-c,-b)

x

Q(-a,-b)

O

ω

α

β

α

β

Fig. 2.8

Proof. a) We have that MN = a − c, MQ =
»
(a+ c)2 + 4b2, NQ =

√
4a2 + 4b2 and cos◊�QMN =

MQ2 +MN2 −QN2

2MQ ·MN
=

c2 − a2

MQ ·MN
. Then

m(◊�QMN) ≥ 90◦ if and only if cos◊�QMN ≤ 0, equivalent to c2 − a2 ≤ 0,
equivalent to (c− a)(c+ a) ≤ 0, which is equivalent to c+ a ≥ 0, that yields
a).
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b) The point M ′ has the coordinates M ′(c, yM ′) and M ′ ∈ [QP ) if and
only if −a ≤ c < −c, which yields b). �

Theorem 2.2. Let MNPQ be a given parallelogram (Fig. 2.8). The geo-

metric locus of ω points situated in the interior of the MNPQ parallelogram

so that ÷ωQM ≡ ÷ωNM is:

a) if c 6= −b2

a
, the hyperbola

(2.4) (H) bx2 − by2 − (a+ c)xy + b3 + abc = 0

intersected with the interior of the MNPQ parallelogram;

b) if c = −b2

a
, the lines

(2.5) d′ : y =
b

a
x and d′′ : y = −a

b
x

intersected with the interior of the MNPQ parallelogram. In this case,

MNPQ becomes a rhomb.

Proof. Let ω be a point with the coordinates ω(x, y), we note α = m(÷ωQM) =

m(÷ωNM), β = m(’ωQP ) = m(÷ωNP ) and by mωN the slope of the ωN line.
Then

(2.6) mωN = tg α =
b− y

a− x
,

mωQ = tg β =
y + b

x+ a
and mMQ = tg(α + β) =

2b

c+ a
. Taking the last two

equalities into account, yield

tgα = tg((α + β)− β) =
tg(α+ β)− tg β

1 + tg(α + β) tg β
=

2b

c+ a
− y + b

x+ a

1 +
2b

c+ a
· y + b

x+ a

,

from where

(2.7) tgα =
2bx− cy − bc− ay + ab

a2 + ac+ ax+ cx+ 2by + 2b2
.

From (2.6) and (2.7), after calculus yield (2.4).
If a11x

2 + 2a12xy + a22y
2 + 2a13x+ 2a23y + a33 = 0 is the general equation

of the conic, then δ = a11a22−a212 = −b2−
Ç
a+ c

2

å2

< 0 because b > 0 and

∆ =

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13
a12 a22 a23
a13 a23 a33

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

b −a+ c

2
0

−a+ c

2
−b 0

0 0 b3 + abc

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= −b(b2 + ac)

Ç
b2 +

Å
a+ c

2

ã2å
.

Because a > 0, b > 0, then D = 0 if and only if b2 + ac = 0, which is

equivalent to c = −b2

a
. So, if c 6= −b2

a
it results that ∆ 6= 0 and (2.4) is
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a hyperbola. If c = −b2

a
then (2.4) becomes bx2 − by2 −

Ç
a − b2

a

å
xy = 0,

which is equivalent to abx2 − (a2 − b2)xy − aby2 = 0, equivalent to (ax +

by)(bx − ay) = 0, which yields (2.5). In this case, where c = −b2

a
, we have

that MN ≡ MQ ≡ a2 + b2

a
. Therefore the MNPQ parallelogram becomes

a rhomb. �

Corollary 2.1. In the conditions of Theorem 2.2, if c 6= −b2

a
, then the

hyperbola (H) defined by (2.4) has the property that its center is O(0, 0).

Proof. If the equation of the hyperbola (H) is f(x, y)=bx2−by2−(a+c)xy+
b3 + abc = 0, then its center can be determined by solving the following

system

{

f ′

x(x, y) = 0

f ′

y(x, y) = 0.
We have

{

2bx− (a+ c)y = 0

−2by − (a+ c)x = 0
, from where we

obtain the solution

{

x = 0

y = 0
, which means that the center of the hyperbola

(H) is O(0, 0). �

Remark 2.2. It can be easily checked that the vertices of the MNPQ

parallelogram belong to the hyperbola given by (2.4). The points N and Q

are situated on the line given by y =
b

a
x. If c = −b2

a
, then the points M

and P are situated on the line given by y = −a

b
x.

Remark 2.3. The point S is situated at the intersection of lines MS of

equation x = c and PS of equation y = −a+ c

2b
x+

(a+ c)c

2b
−b, so S has the

coordinates S
(

c,−ac+ c2 + b2

b

)

. Analogously, the point T has the coordi-

nates

T
(

− c,
ac+ c2 + b2

b

)

. It is easily verified that the points S and T are situ-

ated on the hyperbola (H) given by (2.4) if c 6= −b2

a
, and are situated on

the line d′ given by (2.5) if c = −b2

a
.

Theorem 2.3. Let MNPQ be a given parallelogram, M(c, b), N(a, b),
P (−c,−b), Q(−a,−b), a > 0, b > 0, c < a, −c ≤ a, MS ⊥ QP , PT ⊥ MN ,

MT ⊥ PN , PS ⊥ MQ, ω a point situated in the interior of the MNPQ

parallelogram, so that ωM ⊥ AB, ωN ⊥ BC, ωP ⊥ CD and ωQ ⊥ DA.

(i) If c < 0, then the ABCD quadrilateral is cyclic and ω is the center of

the circumscribed circle of the ABCD quadrilateral if and only if:

a) if c 6= −b2

a
, ω belongs to the intersection between the hyperbola

(H) determined by (2.4) and the interior of MSPT parallelogram;

b) if c = −b2

a
, ω belongs to (MP ) ∪ [TS].
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(ii) If c ≥ 0, then there are not any ω points in the interior of MSPT

parallelogram.

Proof. In Case I, taking Lemma 2.1, Theorem 2.1, Lemma 2.3, Remark 2.3
and Theorem 2.2 into account, yields the demonstration. �

Case II. Let ABCD be a cyclic quadrilateral and MNPQ the corre-
sponding Varignon parallelogram. We will study if ω, the center of the
circumscribed circle of the ABCD quadrilateral, can be situated on a side
of MNPQ parallelogram.

For example, if ω is situated in the interior of the PN side (Fig. 2.9), then
ωN ⊥ BC and ωP ⊥ DC, which is a contradiction. Therefore ω cannot be
situated on the open sides of MNPQ parallelogram.

We will study if ω can be situated in on one of the vertices of the MNPQ

parallelogram, for instance P (Fig. 2.10) and we note AC ∩ BD = {S},
AC ∩ PN = {T}, BD ∩ PQ = {V }.
We have that PN , PQ are median lines in BDC triangle and ADC re-
spectively, which yield PN‖BD and PQ‖AC, from where PTSV is paral-

lelogram, so ÷QPN ≡ ’DSC. But m(’DSC) =
m(ĀB) +m(C̄D)

2
and since

m(C̄D) = 180◦, yields m(÷QPN) > 90◦, which means ÷QPN is an obtuse.
Therefore, the center of the circumscribed circle of the ABCD quadrilateral
can only be situated in a vertex of the Varignon parallelogram, if the angle
corresponding to this vertex is obtuse angle. The side of ABCD quadrilat-
eral corresponding to this vertex is diameter of the circumscribed circle of
the ABCD quadrilateral (Fig. 2.10).

.

A

M B

N

CD

Q

P

ω

Fig. 2.9
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T

P,ω

Fig. 2.10

Similar remarks from the Case I, if d1 ⊥ MN , M ∈ d1, we have a solution
if and only if d1 ∩ [QP 6= ∅. Taking Lemma 2.3 into account, we have a
solution if and only if c < 0 (see Fig. 2.8).

Lemma 2.4. Let MNPQ be a parallelogram, m(÷QPN) > 90◦, PM ⊥ AB,

PN ⊥ BC, PQ ⊥ DA, m(÷QMP ) +m(÷QPD) = 90◦, Q ∈ (AD). If D,P,C

are collinear, then the ABCD quadrilateral is cyclic and the center of the

circumscribed circle of ABCD is P .

Proof. The PQAM and PMBN quadrilaterals are cyclic (Fig. 2.11), that
yields
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(2.8) ’PAQ ≡ ÷PMQ,

(2.9) ÷PQM ≡ ÷PAM

and respectively

(2.10) ◊�PNM ≡ ÷PBM.

But MNPQ is parallelogram, there-

fore ÷PQM ≡ ◊�PNM and taking
(2.9) and (2.10) into account yields
÷PAM ≡ ÷PBM , which means that the
PAB triangle is isosceles, from where

.
.

D

Q

P
C

C'

N

B�

A

.

Fig. 2.11

(2.11) PA ≡ PB.

In the DPQ triangle, m(÷QDP )+m(÷QPD) = 90◦ and taking the hypothesis
into account, yields

(2.12) ÷PMQ ≡÷QDP.

From (2.8) and (2.12), it results that ’PAQ ≡÷QDP , so the triangle PAD is
isosceles, from where

(2.13) PA ≡ PD.

From (2.11) and (2.13) it results that the points D,A,B are situated on a
circle C of center P and radius PA. Let C ∩ BC = {B,C ′} and because
A,D, B,C ′ ∈ C and PQ ⊥ DA, PM ⊥ AB, PN ⊥ BC, yields that the
points A and D are symmetrical to Q, A and B are symmetrical to M and
B and C ′ are symmetrical to N . According to Theorem 1.2, yields points
D,P,C ′ are collinear and symmetrical to P . But C,C ′ ∈ BC, C,C ′ ∈ DP ,
the fact that the points D,P,C ′ and D,P,C are collinear, means that C

and C ′ are coincident points. �

Remark 2.4. In Lemma 2.4 we have proved that for a MNPQ parallelo-

gram with m(÷QPN) > 90◦, there is a cyclic quadrilateral ABCD, uniquely
determinated, so that P is the center of the circumscribed circle of the
ABCD quadrilateral, and MNPQ is the Varignon parallelogram corre-
sponding to the ABCD quadrilateral. Analogously, the point M has got
the same property.

Theorem 2.4. Let MNPQ be a given parallelogram, M(c, b), N(a, b),
P (−c,−b), Q(−a,−b), a > 0, b > 0, c < a, −c ≤ a.

(i) If c < 0, then there exists an unique cyclic quadrilateral ABCD so that

P is the center of the circumscribed circle of the ABCD quadrilateral and

MNPQ is the Varignon parallelogram corresponding to the ABCD quadri-

lateral. The point M has got the same property and the points P and M are

situated on the (H) hyperbola determined by (2.4) if c 6= −b2

a
and P,M ∈ d′′

if c = −b2

a
.
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(ii) If c ≥ 0, then the points P , and respectively M , cannot be the center of

the circumscribed circle of ABCD quadrilateral, which means that MNPQ

is Varignon parallelogram corresponding to the ABCD quadrilateral.

Proof. Taking Lemma 2.4 and remarks above into account, yields the demon-
stration. �

Case III. Let ABCD be a cyclic quadrilateral and MNPQ the Varignon
parallelogram corresponding to the ABCD quadrilateral. We will study if
ω, the center of the circumscribed circle of the ABCD quadrilateral can be
situated in the exterior of the MNPQ parallelogram.

Let ω be a point situated in the exterior of the parallelogram MNPQ and
AC ∩ BD = {S}, AC ∩ PN = {T}, BD ∩ PQ = {V } (Fig. 2.12). Because
ωP ⊥ DC and ω is situated in the exterior of the MNPQ parallelogram, it
results that ω is situated in the exterior of the ABCD quadrilateral. Because

PTSV is a parallelogram, we have that ÷QPN ≡ ’DSC. But m(’DSC) =

m(ĀB) +m(C̄D)

2
and since m(C̄D) > 180◦, yields m(÷QPN > 90◦, which

means ÷QPN is obtuse angle.

Q

A

M
B

N

C
�

�

	




�

�

Fig. 2.12

Lemma 2.5. Let ABCD be a cyclic quadrilateral, ω the center of the cir-

cumscribed circle of the ABCD quadrilateral, MNPQ the Varignon par-

allelogram corresponding to the ABCD quadrilateral, M ∈ AB, N ∈ BC,

P ∈ CD and Q ∈ DA. If ω is situated in the exterior of the MNPQ

parallelogram and m(÷QPN) > 90◦, then

a) ’ωQP ≡÷ωNP

and

b) ωQ ∩ IntMNPQ = ωN ∩ IntMNPQ = ∅.

Proof. Because ωP ⊥ DC, ωQ ⊥ AD, ωN ⊥ BC we conclude that the

ωDQP and the ωCNP quadrilaterals are cyclic, from where ’ωDP ≡ ’ωQP

and ’ωCP ≡÷ωNP (Fig. 2.12). But the ωDC triangle is isosceles, therefore
’ωDP ≡ ’ωCP and taking the previous relations into account, yield part a)
from this lemma.
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A
M
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N

C
P

D

Q

ω

Fig. 2.13

If ωQ ∩ IntMNPQ 6= ∅
and ωN ∩ IntMNPQ 6= ∅,
then ω ∈ IntMNPQ which is
a contradiction.
Let ωQ∩ IntMNPQ = ∅ and
ωN ∩ IntMNPQ 6= ∅ (Fig.
2.13). Taking a) into account,

yields ’ωQP ≡ ÷ωNP , from
where
(2.14)

m(÷ωNM) < n(◊�PNM)

and
(2.15)

m(÷ωQM) > m(÷PQM).

The ωNBM and the ωQAM quadrilaterals are cyclic, therefore ÷ωNM ≡
÷ωBM and ÷ωQM ≡ ÷ωAM . But the ωAB triangle is isosceles, so ÷ωAM ≡
÷ωBM and therefore we obtain

(2.16) ÷ωNM ≡ ÷ωQM.

From (2.14)-(2.16) yield m(÷PQM) < ω(◊�PNM), which is a contradiction

because m(÷PQM) = m(◊�PNM). In conclusion, part b) takes place. �

Lemma 2.6. Let MNPQ be a parallelogram where m(÷QPN) > 90◦, and ω

is a point so that ωQ ∩ IntMNPQ = ωN ∩ IntMNPQ = ∅ and ’ωQP ≡
÷ωNP . Therefore m(÷ωMQ) +m(’ωPQ) = 180◦.

Proof. In the triangle ωQP and ωNP , according to the law of sines (Fig.

2.12), we obtain
sinα

ωP
=

sinx

ωQ
and

sinα

ωP
=

sin(360◦ − b− x)

ωN
, where we

note m(’ωQP ) = α, m(÷QPN) = b and m(’ωPQ) = x. From the relations
above, yield

(2.17)
− sin(b+ x)

sinx
=

ωN

ωQ
.

In the triangles ωQP and ωNP , according to the law of sines, we obtain
sin y

ωQ
=

sin(α+ a)

ωM
and

sin(b− y)

ωN
=

sin(α+ a)

ωM
, where m(÷ωMQ) = y and

m(÷PQM) = a. From the last previous equalities, we obtain that

(2.18)
sin(b− y)

sin y
=

ωN

ωQ
.

From (2.17) and (2.18), we have that
− sin(b+ x)

sinx
=

sin(b− y)

sin y
, equiva-

lent to − sin y sin b cos x− sin y sinx cos b = sinx sin b cos y − sinx sin y cos b,
equivalent to sin b sin(x + y) = 0. Because b ∈ (0◦, 180◦), so sin b 6= 0, it
results that sin(x + y) = 0, from where x + y = 180◦, which needs to be
proved. �
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Theorem 2.5. Let ω be a point situated in the exterior of the parallelo-

gram MNPQ, so that ωQ ∩ IntMNPQ = ωN ∩ IntMNPQ = ∅ and
’ωQP =÷ωNP . If m(÷QPN) > 90◦, AB ⊥ ωM , BC ⊥ ωN , CD ⊥ ωP and

DS ⊥ ωQ, then ABCD is a cyclic quadrilateral and ω is the center of the

circumscribed circle of the ABCD quadrilateral.

Proof. From AB ⊥ ωM and DA ⊥ ωQ, we obtain that the ωMAQ quadri-
lateral is cyclic (Fig. 2.14), from where

A

M

B

N

C
P

�

D

ω

Fig. 2.14

(2.19) ÷ωAM ≡ ÷ωQM

and

(2.20) ÷ωMQ ≡ ’ωAQ.

The quadrilateral ωMBN is cyclic,
therefore

(2.21) ÷ωBM ≡ ÷ωNM.

Because MNPQ is a parallelogram, so ÷PQM ≡ ◊�PNM and from the hy-

pothesis we have ’ωQP ≡ ÷ωNP , therefore ÷ωQM ≡ ÷ωNM . Taking (2.19)

and (2.21) into account, we obtain that ÷ωAM ≡÷ωBN , so the triangle ωAB
is isosceles, so

(2.22) ωA ≡ ωB.

The quadrilateral ωDQP is cyclic, which means that

(2.23) m(’ωDQ) +m(’ωPQ) = 180◦.

According to Lemma 2.6 we have that m(÷ωMQ) + m(’ωPQ) = 180◦ and

taking (2.20) and (2.23) into account, yield ’ωAQ ≡ ’ωDQ, therefore the
triangle ωAD is isosceles, so

(2.24) ωA ≡ ωD.

The quadrilaterals ωDQP and ωCNP are cyclic, therefore ’ωQP ≡ ’ωDP

and ÷ωNP ≡ ’ωCP . But, from the hypothesis we have ’ωQP ≡ ÷ωNP , and

then from the equalities above we deduce that ’ωDP ≡ ’ωCP . Therefore the
triangle ωCD is isosceles, from where

(2.25) ωD ≡ ωC.

From (2.16), (2.24) and (2.25), we have that the ABCD quadrilateral is
cyclic and ω is the center of the circumscribed circle of the ABCD quadri-
lateral. �

Remark 2.5. In the previous conditions, if ’ωQD ≡ ÷ωND then we obtain

that ÷ωQM ≡ ÷ωNM , because MNPQ is a parallelogram.

According to the ideas from Case I, we have the marked areas in Fig. 2.15
for c < 0 and in Fig. 2.16 for c ≥ 0 respectively.
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Fig. 2.15
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d1

N
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d3
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V

M

P

V'

U'

T'

S'

�

c>0

T1

S1

Fig. 2.16

In this case, let MNPQ be a parallelogram and its center the origin of the
axis system (Fig. 2.17), where a > 0, b > 0 and c < a.

M(c,b)

O

Q(-a,-b)

(x,y)

P(-c,-b)

x

N(a,b)

y

.

.

.

β

ω

γ

α

α

α

Fig. 2.17

Theorem 2.6. Let MNPQ be a given parallelogram with m(÷QPN) > 90◦

(Fig. 2.17). The geometric locus of ω points situated in the exterior of the

parallelogram MNPQ so that ωQ ∩ IntMNPQ = ωN ∩ IntMNPQ = ∅
and ’ωQP ≡÷ωNP is:

a) if c 6= −b2

a
, the hyperbola

(2.26) (H) bx2 − by2 − (a+ c)xy + b3 + abc = 0

intersected with the exterior of the parallelogram MNPQ;

b) if c = −b2

a
, the lines

(2.27) d′ : y =
b

a
x and d′′ : y = −a

b
x
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intersected with the exterior of the parallelogram MNPQ (in this situation,

MNPQ becomes a rhomb).

Proof. Let ω(x, y) and we note m(’ωQP ) = m(÷ωNP ) = α, the measures of
the angles formed by the lines ωN , PN with Ox axis by β, and γ respectively
(Fig. 2.17).

We have that mωQ = tg(180◦ − α) =
y + b

x+ a
, from where

(2.28) tgα = − y + b

x+ a
.

On the other hand, mPN = tg γ =
2b

a+ c
and mωN = tg β =

y − b

x− a
. Then

α = β − γ, yields tgα = tg(β − γ), equivalent to

tgα =
tg β − tg γ

1 + tg β tg γ
=

y − b

x− a
− 2b

a+ c

1 +
y − b

x− a
· 2b

a+ c

,

from where

(2.29) tgα =
ay − ab+ cy − 2bx+ bc

ax− ac+ cx− c2 + 2by − 2b2
.

From (2.28) and (2.29) after calculus, we obtain (2.26). �

Remark 2.6. The point T1 is situated at the intersection of lines QU of

equation x = −a and S1N of equation y = −a+ c

2b
x +

(a+ c)a

2b
+ b, so

T1 has the coordinates T1

(

− a,
ac+ a2 + b2

b

)

and T ′

(

a,−ac+ a2 + b2

b

)

,

V
(

− c,
ac+ c2 + b2

b

)

, V ′

(

c,−ac+ c2 + b2

b

)

analogously. It is easily veri-

fied that the points T1, T
′, V, V ′ are situated on the hyperbola (H) given by

(2.26) if c 6= −b2

a
. If c = −b2

a
, then the points V, V ′ ∈ d′ and T1, T

′ ∈ d′′.

In the following, see the ideas that led to the proof of Theorem 2.2.

Theorem 2.7. Let MNPQ be a given parallelogram, M(c, b), N(a, b),
P (−c,−b), Q(−a,−b), a > 0, b > 0, c < a, c < 0, MS1 ⊥ MN , T1U ⊥
MN , MU ⊥ MQ, T1S1 ⊥ MQ, N ∈ T1S1, PS′ ⊥ QP , U ′T ′ ⊥ QP ,

PU ′ ⊥ PN , S′T ′ ⊥ PN , Q ∈ S′T ′ (Fig. 2.15), ω a point situated in

the exterior of the MNPQ parallelogram so that ωM ⊥ AB, ωN ⊥ BC,

ωP ⊥ CD and ωQ ⊥ DA.

The ABCD quadrilateral is cyclic and ω is the center of the circumscribed

circle of the quadrilateral ABCD if and only if:

a) if c 6= −b2

a
, ω belongs to the intersection between the hyperbola (H)

given by (2.26) and the set [MS1T1U ] ∪ [PS′T ′U ′]\{M,P}(Fig. 2.15);

b) if c = −b2

a
, ω belongs to set [T1M) ∪ (PT ′] (Fig. 2.15).
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Proof. Taking Lemma 2.5, Theorem 2.5, Lemma 2.6, Remark 2.5, Remark
2.6 and Theorem 2.6 into account, yield the demonstration. �

.

.

.

.
T1

S1

M
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S

Q

T

P
U'

T'
S'

Fig. 2.18

T1

S1
N

M

T

U'

P

T'

S'

Q

S

U

Fig. 2.19

Theorem 2.8. Let MNPQ be a given parallelogram, M(c, b), N(a, b),
P (−c,−b), Q(−a,−b), a > 0, b > 0, c < a, −c ≤ a, c ≥ 0, S1V ⊥ MN ,

T1U ⊥ MN , UV ⊥ MQ, T1S1 ⊥ MQ, N ∈ T1S1, M ∈ UV , Q ∈ T1U ,

P ∈ V S1, S
′V ′ ⊥ QP , T ′U ′ ⊥ QP , U ′V ′ ⊥ PN , T ′S′ ⊥ PN , Q ∈ T ′S′,

P ∈ U ′V ′, N ∈ T ′U ′, M ∈ V ′S′ (Fig. 2.15), and ω a point situated in the

exterior of the MNPQ parallelogram, ωM ⊥ AB, ωN ⊥ BC, ωP ⊥ CD

and ωQ ⊥ DA.

The ABCD quadrilateral is cyclic and ω is the center of the circumscribed

circle of the ABCD quadrilateral if and only if

a) if c 6= −b2

a
, ω belongs to the intersection between the hyperbola (H)

given by (2.26) and the set [S1T1UV ] ∪ [S′T ′U ′V ′] (Fig. 2.16);

b) if c = −b2

a
ω belongs to the set [T1V ] ∪ [V ′T ′] (Fig. 2.16).

Proof. From Lemma 2.5, Theorem 2.5, Lemma 2.6, Remark 2.5, Remark 2.6
and Theorem 2.6 yield the proof. �

In the end, we withdraw the conclusion in Theorem 2.9.

Theorem 2.9. Let MNPQ be a give parallelogram, M(c, b), N(a, b),
P (−c,−b), Q(−a,−b), a > 0, b > 0, c < a, −c ≤ a, and ω a point sit-

uated in the plane, ωM ⊥ AB, ωN ⊥ BC, ωP ⊥ CD and ωQ ⊥ DA.

(i) Let c < 0 and MS ⊥ PQ, PT ⊥ PQ, S, T ∈ IntMNPQ, MS1 ⊥
MN , QT1 ⊥ MN , PS′ ⊥ PQ, NT ′ ⊥ PQ, MU ⊥ MQ, QS′ ⊥ MQ,

PU ′ ⊥ PN , NS1 ⊥ PN (see Fig. 2.18).
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Then the ABCD quadrilateral is cyclic and ω is the center of the circum-

scribed circle of the ABCD quadrilateral if and only if:

a) if c 6= −b2

a
, ω belongs to the set determinated by the intersec-

tion between the hyperbola (H) given by (2.4) and [MSPT ] ∪ [MS1T1U ] ∪
[PS′T ′U ′];

b) if c = −b2

a
ω belongs to the set [T1T

′] ∪ [ST ] (see Fig. 2.19).

(ii) Let c ≥ 0 and T1U ⊥ PQ, S1V ⊥
PQ, S′V ′ ⊥ MN , T ′U ′ ⊥ MN ,

UV ⊥ PN , T1S1 ⊥ PN , S′T ′ ⊥ PN ,

U ′V ′ ⊥ PN (see Fig. 2.20).
Then the ABCD quadrilateral is

cyclic and ω is the center of the

circumscribed circle of the ABCD

quadrilateral if and only if:

a) if c 6= −b2

a
, ω belongs to

the intersection between hyperbola (H)
given by (2.4) and the [V S1T1U ] ∪
[V ′S′T ′U ′].

b) if c = −b2

a
, ω belongs to the

set [T1V ] ∪ [S′T ′].

.

. T1
S1

U

V

M

N

P

� ��

��

��

��.

.

Fig. 2.20

In conclusion, for c 6= −b2

a
, c < 0, the hyperbola (H) given by (2.4) has

got a branch that goes through the points T1,M, S,Q and another branch
goes through the points N,T, P, T ′. For c ≥ 0, a branch goes through the
points T1, V,M,N , and another branch goes through the points Q,P, S′, T ′.

Finally, we give the method of construction a figure determinated by a
point of geometrical locus.

Let MNPQ be a given Varignon’s parallelogram and ω a point of the ge-
ometrical locus. The perpendicular in ω to ωM intersects the perpendicular
in ω to ωQ in A, and similarly are obtained the points B,C,D (see Fig.
2.1). So, we get the cyclic quadrilateral ABCD, where ω is the center of
the circumscribed circle.
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