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Cyclic quadrilaterals corresponding to a given
Varignon parallelogram

OVIDIU T. POP, SANDOR NAGYDOBAI KISS and NICUSOR
MINCULETE

ABSTRACT. In this paper, we will study the cyclic quadrilaterals that
have as a Varignon parallelogram any given parallelogram.

1. INTRODUCTION

In this article we obtain the results from [1], albeit through distinct and
divergent methods. The description of the geometric locus featured in this
article is more detailed. The following result is well-known.

Theorem 1.1 (Varignon Theorem, 1731). Let ABCD be a quadrilateral.
If M, N, P,Q are the midpoints of the sides AB, BC, CD, and DA respec-
tively, then M N PQ is a parallelogram and 2T[M N PQ] = T[ABC D], where
T[ABCD] is the area of quadrilateral ABCD.

In [5] one reciprocal theorem of Theorem 1.1 is demonstrated.

Theorem 1.2. Given non collinear points so that M N PQ is a parallelogram
and considering an arbitrary point A in the plane of M N PQ, there exist
B,C, D so that, M, N, P,Q are midpoints of sides AB, BC', CD, and DA
respectively.

In this paper, we will consider convex quadrilaterals. If ABC'D is a convex
quadrilateral, M, N, P, are the midpoints of the sides AB, BC', CD and
D A respectively, then the Varignon parallelogram corresponding to ABCD
quadrilateral is convex. The M N P(@) parallelogram, except for the points
M, N, P,Q is situated in the interior of ABC'D quadrilateral.

According to Theorem 1.1, the quadrilateral M N PQ is call the Varignon’s
parallelogram corresponding to ABC' D quadrilateral.

Theorem 1.2 implies that given M N PQ parallelogram there is an infinite
number of quadrilaterals that have as a Varignon parallelogram the M N PQ
parallelogram.
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The following result is known (see [4]).

Theorem 1.3. Let ABCD be a cyclic quadrilateral, w the center of the
circumcircle of ABCD. If MNPQ is the Varignon’s parallelogram corre-
sponding to ABCD quadrilateral, then wM 1 AB, wN 1 BC, wP 1 CD
and w@ 1L DA.

In this paper, we will solve the following problem: given the M N PQ
parallelogram, we will determine the geometrical locus of the points w with
the property that there exists a cyclic quadrilateral ABC D, the centre of
the circumscribed circle of the ABC D quadrilateral is w and M N PQ) is the
Varignon parallelogram corresponding to ABC' D quadrilateral.

2. MAIN RESULTS

Case I. Let MNPQ be a parallelogram corresponding to the cyclic
quadrilateral ABC'D and we suppose that w, the centre of the circumscribed
circle of the ABC' D quadrilateral, is situated in the interior of the M N PQ
parallelogram.

Lemma 2.1. Let ABCD be a cyclic quadrilateral, w the centre of the cir-
cumscribed circle of the ABCD quadrilateral, M N PQ the corresponding
Varignon parallelogram to the ABCD quadrilateral, M € AB, N € BC,
P € CD and Q € DA If w is situated in the interior of the MNPQ

parallelogram, then wQM = WNM and the analogs.

Proof The quadrilaterals w@. wQAM and wM BN are cyclic (Fig. 2.1), there-
fore wQM = WAM and WNM = wBM respectively. But the triangle wAB

is isosceles, therefore wAM = wBM and according to all the congruences
above, yields the conclusion of the lemma. O

Next, we prove the existence of a point w in an arbitrary parallelogram
MN PQ such that wQM = wNM.

Proposition 2.1. There exist a point w situated in the interior of the par-
allelogram M N PQ such that wQM = wNM.

Proof. We construct the straightline NT”, where T" € (M Q) and T'U||M N,
U € (NP), implies T'NM = NT'U. It {V} =T'NN MU and let V' be
the isogonal conjugate of a point V with respect to a triangle MT'U is
constructed by reflecting the line 7"V about the angle bisector of T”, then

MT'V' = VT'U. Finally, we construct the parallel through @ to the line

T'V’ which intersects the line 7N in w. Therefore, we have wQM = wN M.
Hence, for every straightline NT’, with 77 € (MQ), there is a single point

w such that @]\\4 = UNM. O

Lemma 2.2. Ifw is a_point sztuated m the interior of the M N PQ paral-
lelogram and wQM = wNM then MN = wPN.

Proof. We note m(wQM) = a, m(QMN) = a, m(wMN) =z, m(m) =
y, where o, a,z,y € (0°,180°). We have to prove that x =y (Fig. 2.2).
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In the trlangles MQw and M Nw, accordlng to the sine theorem, yields

smwQM sin QMw q sinwN M _ sinwMN sina sin(a — z)
wM wQ a oM wN YoM w@
q sina sinz ¢ b sin(fa —z)  w@ valent ¢
and —-= —, from where ————= —, equivalent to
w@
2.1 51 tgx —cosa = —.
(2.1) sinactgs —cosa = —

Taking that m(c@\P) = m(ﬁ) = 180° — a — « into account, analogously
we obtain that

w@
2.2 S| tgy —cosa = —.
(2.2) sinactgy —cosa = —

From (2.1) and (2.2) yields that sin a-ctg x—cos a = sin a-ctg y—cos a, equiv-
alent to ctgx = ctgy. Because z,y € (0,180°), according to the previous
equality, we obtain that x = y. O

Theorem 2.1. Let w be a pomt situated in the interior of M N PQ paral-

lelogram so that wQM = WNM. If AB 1 wM, BC L. wN,CD 1 wP and
DA | w@, then ABCD is a cyclic quadmlateml and w is the center of the
circumscribed circle of the ABC'D quadrilateral.

Proof Because wQM = wNM according to Lemma 2.2 ylelds wMN

wPN. But MN PQ is a parallelogram, which means that wQP = UNP.
From AB 1 wM, DA 1 w@ and BC 1 wN (Fig. 2.3), it results that the
quadrllaterals wQAM and wM BN are Cychc which means that wQM =
wAM and WNM = wBM. But wQM = WNM and taken all the above

into consideration, yields wAM = wBM. Tn conclusion, the triangle wAB
is isosceles, therefore

(2.3) wA = wB.
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Fig. 2.3

Analogously, from wMN = wPN and on\P = Cj\f?, it results that wB =
wC, wD = wC respectively. Taking (2.3) into account, we obtain that
wA = wB = wC = wD, therefore ABCD is a cyclic quadrilateral and w is
the centre of the circumscribed circle of the ABC' D quadrilateral. U

Remark 2.1. Theorem 2.1 is a reciprocal results to Lemma 2.1.

Let M NPQ be a Varignon’s parallelogram corresponding to the cyclic

quadrilateral ABCD. Let w be the centre of the circumcircle of ABCD.
We suppose that w is situated in the interior of the M N PQ parallelogram.
We will determine the plane area in which w is situated.
Taking Theorem 1.3 and Lemma 2.1 into account, we have that wM 1 ADB,
wN L BC,wP 1 CD, wQ L DA and [ABCD|N[MNPQ| = [M,N,P,Q]
(see Fig. 2.1), where [ABCD)] is the surface determined by the ABCD
quadrilat/elzi and its interior.

If m(MNP) < 90° then any perpendiculars in N on wN does not inter-

sect the interior of M N PQ parallelogram (Fig. 2.4). If m(j\m) > 90°,
we consider the following lines dy L MN, do L MN, M € dy, P € do,
ds L MQ,dy L MQ, M €ds, P€dy,diNdy = {S}, dsNdy = {T}

Let (diN be the open half plane determinated by d; line and the N point.
Because w point is situated in the interior of the M N P(Q) parallelogram,
wM 1 AB and M N P(Q parallelogram, except for the points M, N, P, Q is
situated in the interior of ABCD quadrilateral, it results that w € (di.N N
(dsQ. Similarly w € (d2@ N (dyN. The surface we are searching for is
represented by the interior of the M SPT parallelogram (Fig. 2.4).

d, d;
M N
T
S
d;
0 P
d,

Fig. 2.4
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Taking the previous remarks into account, we have a solution if and only
if d; line intersects [QP). We do not have a solution in a contrary case, then
¢ >0 (see Fig. 2.5

If MNPQ is a rectangle, then its interior is convenient for w point (Fig.
2.6) and if M NPQ is a rhomb, then the interior of the marked area from
Fig. 2.7 is convenient.

In the following, let M N P(Q be a parallelogram, where its centre is the
origin of the axis system (Fig. 2.8), a >0, b > 0 and ¢ < a.

~—

Lemma 2.3. Let MNPQ be a given parallelogram (see Fig. 2.8). Then
a) m(QMN) > 90° & —c < a.
b) If MM' L QP, M' € QP, then M’ € [QP) < —c < a and ¢ < 0.

y
M(c,b) Na,b)
o6y) s
p
O(-a,-b) P(-c,-b)

Fig. 2.8

Proof. a) We have that MN = a — ¢, MQ = y/(a+c)?2+4b?, NQ =
_— MQ@?>+ MN? - QN? ? —a?
V4a? + 4b? MN = = . Th
a® 4+ 4b% and cos ) QMQ VN MO MN en

(QMN) > 90° if and only if cos QMN < 0, equivalent to ¢ — a® < 0,
equivalent to (¢ —a)(c+a) < 0, which is equivalent to ¢+ a > 0, that yields

a).
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b) The point M’ has the coordinates M’'(c,ypr) and M’ € [QP) if and
only if —a < ¢ < —¢, which yields b). O

Theorem 2.2. Let M NPQ be a given parallelogram (Fig. 2.8). The geo-
metric locus of w points situated in the interior of the M N PQ parallelogram

so that m =wNM is:
2

b
a) if ¢ # - the hyperbola

(2.4) (H) ba? —by* — (a+ c)zy + b° + abc =0

intersected with the interior of the M N PQ parallelogram;
2

b
b) if c=——, the lines
a

b a
2.5 d:y=- d d:.y=-—=
(2.5) Y ax an Yy bx

intersected with the interior of the M N PQ parallelogram. In this case,
MN PQ becomes a rhomb.

Proof. Let w be a point with the coordinates w(x,y), we note a = m(m) =
m(m), g = m(@) = m(m) and by my,n the slope of the wN line.
Then

b—y

a—z’

(2.6) myN =tga =

+b 2b
meg = tgf = z+ - and myrq = tgla+ f) = ra Taking the last two
equalities into account, yield
2b y+0b
tgla+p8)—tgB  cta x4a
20 y+b’

c+a x+a

tea=t9l(a+8) —B) = T Ated s

from where
2bx —cy — bc— ay + ab
a? + ac+ ax + cx + 2by + 2%
From (2.6) and (2.7), after calculus yield (2.4).
If aj122 + 2a19y + a22y2 + 2a13¢ + 2a923y + a3z = 0 is the general equation

(2.7) tga =

. 9 9 a—+c 2
of the conic, then § = ajja92 —ajy = —b* — < 0 because b > 0 and
a—+c
a1 a2 a13 b 9 0
A= a2 22 a3 = a—+c b 0
a3 a3 ass 2
0 0 b3 + abe

— —b(b? + ac) <b2 + (“"2”)2> .

Because a > 0, b > 0, then D = 0 if and only if b> + ac = 0, which is
b? b?

equivalent to ¢ = ——. So, if ¢ # —— it results that A # 0 and (2.4) is
a a
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b? b?

a hyperbola. If ¢ = —— then (2.4) becomes bx? — by? — (a — —) xy = 0,
a a

which is equivalent to abz? — (a? — b?)zy — aby? = 0, equivalent to (ax +
2

b
by)(bx — ay) = 0, which yields (2.5). In this case, where ¢ = ——, we have
a

2 62
that MN = MQ = &+

a

a rhomb. O
2

Corollary 2.1. In the conditions of Theorem 2.2, if ¢ # ——, then the
a

hyperbola (H) defined by (2.4) has the property that its center is O(0,0).

. Therefore the M N P(Q) parallelogram becomes

Proof. If the equation of the hyperbola (H) is f(x,y)=bx>~by? — (a+c)xy+
b3 + abc = 0, then its center can be determined by solving the following

"(z,y) =0 20x — (a+c)y =0
system f:f( v) We have ( Jy , from where we
fy(z,y) =0. —2by — (a+c)x =0
obtain the solution - 0 which means that the center of the hyperbola
y =
(H) is O(0,0). O

Remark 2.2. It can be easily checked that the vertices of the M NPQ
parallelogram belong to the hyperbola given by (2.4). The points N and @
2

b b
are situated on the line given by y = —z. If ¢ = ——, then the points M
a a

a
and P are situated on the line given by y = —3%

Remark 2.3. The point S is situated at the intersection of lines M.S of

a+c (a+c)c
5% T+ % —b, so S has the

equation z = ¢ and PS of equation y = —
ac + ¢ + b?

2 ) Analogously, the point T has the coordi-

coordinates S (c, —
nates

ac + c® + b? , , , . .
T(— c, T) It is easily verified that the points S and T are situ-
b2
ated on the hyperbola (H) given by (2.4) if ¢ # ——, and are situated on
a
2

the line d’ given by (2.5) if c = ——.
a

Theorem 2.3. Let MNPQ be a given parallelogram, M (c,b), N(a,b),
P(—¢,-b), Q(—a,=b),a>0,b>0,c<a, —c<a, MS L. QP, PT L MN,
MT 1 PN, PS L M@, w a point situated in the interior of the M N PQ
parallelogram, so that wM 1 AB, wN | BC, wP 1 CD and w@ 1 DA.

(i) If ¢ < 0, then the ABCD quadrilateral is cyclic and w is the center of

the circumscribed circle of the ABC'D quadrilateral if and only if:
2

a) if ¢ # —— w belongs to the intersection between the hyperbola

(H) determined by (2.4) and the interior of MSPT parallelogram;
2

b
b) if c= W belongs to (M P) U [TS].
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(i) If ¢ > 0, then there are not any w points in the interior of MSPT
parallelogram.

Proof. In Case I, taking Lemma 2.1, Theorem 2.1, Lemma 2.3, Remark 2.3
and Theorem 2.2 into account, yields the demonstration. O

Case II. Let ABCD be a cyclic quadrilateral and M N P(Q the corre-
sponding Varignon parallelogram. We will study if w, the center of the
circumscribed circle of the ABC' D quadrilateral, can be situated on a side
of M N P( parallelogram.

For example, if w is situated in the interior of the PN side (Fig. 2.9), then
wN | BC and wP 1 DC, which is a contradiction. Therefore w cannot be
situated on the open sides of M N P() parallelogram.

We will study if w can be situated in on one of the vertices of the M N PQ
parallelogram, for instance P (Fig. 2.10) and we note AC N BD = {S},
ACNPN ={T}, BDNPQ ={V}.

We have that PN, P(Q are median lines in BDC triangle and ADC re-
spectively, which yield PN||BD and PQ|AC, from where PTSV is paral-
S — m(AB) +m(CD)
lelogram, so QPN = DSC. But m(DSC) = 5
m(é—l\)) = 180°, yields m(Q/PTV) > 90°, which means Q/PTV is an obtuse.
Therefore, the center of the circumscribed circle of the ABC D quadrilateral
can only be situated in a vertex of the Varignon parallelogram, if the angle
corresponding to this vertex is obtuse angle. The side of ABCD quadrilat-
eral corresponding to this vertex is diameter of the circumscribed circle of
the ABCD quadrilateral (Fig. 2.10).

and since

M B
A
N
W
D
v C
Fig. 2.9 Fig. 2.10

Similar remarks from the Case I, if dy L M N, M € d;, we have a solution
if and only if d; N [QP # (. Taking Lemma 2.3 into account, we have a
solution if and only if ¢ < 0 (see Fig. 2.8).

Lemma 2.4. Let MNPQ b/eﬂoamllelog/rc@, m(@?]\\f) > 90°, PM 1 AB,
PN 1L BC, PQ L DA, m(QMP)+m(QPD) =90°, Q € (AD). If D, P,C
are collinear, then the ABCD quadrilateral is cyclic and the center of the
circumscribed circle of ABCD is P.

Proof. The PQAM and PM BN quadrilaterals are cyclic (Fig. 2.11), that
yields
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(2.8) PAQ = PMO,

(2.9) PQM = PAM

and respectively

(2.10) PNM = PBM.

But ]\I/Z\EQ is paﬁi_llilogram, there-
fore PQM = PNM and taking

(2.9) and (2.10) into account yields

PAM = PBM , which means that the
PAB triangle is isosceles, from where Fig. 2.11

(2.11) PA=PB.

In the DPQ triangle, m(Q/]:?TD) —{—m(@\D) = 90° and taking the hypothesis
into account, yields

(2.12) PMQ = QDP.

From (2.8) and (2.12), it results that PAQ = QDP, so the triangle PAD is
isosceles, from where

(2.13) PA=PD.

From (2.11) and (2.13) it results that the points D, A, B are situated on a
circle C of center P and radius PA. Let C N BC = {B,C’} and because
A,D, B,C" € C and PQ L DA, PM 1 AB, PN 1 BC, yields that the
points A and D are symmetrical to (), A and B are symmetrical to M and
B and C’ are symmetrical to N. According to Theorem 1.2, yields points
D, P,C’ are collinear and symmetrical to P. But C,C’ € BC, C,C' € DP,
the fact that the points D, P,C" and D, P,C are collinear, means that C
and C’ are coincident points. O

Remark 2.4./II£4€H1H1& 2.4 we have proved that for a M N P(Q) parallelo-
gram with m(QPN) > 90°, there is a cyclic quadrilateral ABC' D, uniquely
determinated, so that P is the center of the circumscribed circle of the
ABCD quadrilateral, and M N P(Q is the Varignon parallelogram corre-
sponding to the ABCD quadrilateral. Analogously, the point M has got
the same property.

Theorem 2.4. Let MNPQ be a given parallelogram, M/ (c,b), N(a,b),
P(—¢,—b), Q(—a,-b), a>0,b>0,c<a, —c<a.

(1) If ¢ < 0, then there exists an unique cyclic quadrilateral ABC'D so that
P is the center of the circumscribed circle of the ABCD quadrilateral and
MN PQ is the Varignon parallelogram corresponding to the ABCD quadri-

lateral. The point M has got the same property and the points P and M are
2

b
situated on the (H) hyperbola determined by (2.4) if ¢ # —— and P,M € d"
a

ifc=——.
a
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(i) If ¢ > 0, then the points P, and respectively M, cannot be the center of
the circumscribed circle of ABCD quadrilateral, which means that M N PQ
is Varignon parallelogram corresponding to the ABCD quadrilateral.

Proof. Taking Lemma 2.4 and remarks above into account, yields the demon-
stration. O

Case III. Let ABCD be a cyclic quadrilateral and M N P(Q the Varignon
parallelogram corresponding to the ABC'D quadrilateral. We will study if
w, the center of the circumscribed circle of the ABC D quadrilateral can be
situated in the exterior of the M N PQ parallelogram.

Let w be a point situated in the exterior of the parallelogram M N P(Q and
ACNBD ={S}, ACNnPN ={T}, BDNPQ = {V} (Fig. 2.12). Because
wP 1 DC and w is situated in the exterior of the M N P(Q) parallelogram, it
results that w is situated in the exterior of tMBCD quadrilateral. Because
PTSV is a parallelogram, we have that QPN = DSC. But m(D/—\SC) =
m(AB) +m(CD)

2
means QPN is obtuse angle.

and since m(CD) > 180°, yields m(@]\\f > 90°, which

Fig. 2.12

Lemma 2.5. Let ABCD be a cyclic quadrilateral, w the center of the cir-
cumscribed circle of the ABCD quadrilateral, M N PQ the Varignon par-
allelogram corresponding to the ABCD quadrilateral, M € AB, N € BC,
P € CD and Q € D/A.\Ifw is situated in the exterior of the M N PQ
parallelogram and m(QPN) > 90°, then

a) (,jC—)\P = wNP
and

b) wQ N Int MNPQ = wN NInt MNPQ = 0.

Proof. Because wP 1 DC, w@ | AD, wN 1 BC we conclude that the
wDQEP and the wC'N P quadrilaterals are cyclic, from where wDP = wQP
and wCP = wNP (Fig. 2.12). But the wDC triangle is isosceles, therefore

wDP = wCP and taking the previous relations into account, yield part a)
from this lemma.
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If wQNIntMNPQ # 0
and wN N Int MNPQ # 0,
then w € Int M N P(Q which is
a contradiction.

Let wQ N Int MNPQ = () and
wN N Int MNPQ # 0 (Fig.
2.13). Taking a) into account,
yields @ = w/ﬁ, from

where
(2.14)
m(wNM) < n(PNM)
and
Fig. 2.13 (2.15)

m(wQM) > m(PQM).

The wNBM and the wQAM quadrilaterals are cyclic, therefore wN M =
wBM and wQM = WAM. But the wAB triangle is isosceles, so WAM =
wBM and therefore we obtain

(2.16) wNM = wQM.
From (2.14)-(2.16) yield m(m) < w(m), which is a contradiction
because m(PQM) = m(PNM). In conclusion, part b) takes place. O

Lemma 2.6. Let M N PQ be a parallelogram where m(Cﬁjl\V) > 900, and w
is a point so that wQ N IntMNPQ =wNNInt MNPQ = 0 and wQP =
wNP. Therefore m(wMQ) + m(wPQ) = 180°.

Proof. In the triangle w@QP and wN P, according to the law of sines (Fig.

519 bta sina sinz d sina sin(360° — b — ) L
.12), we obtain = wQ and —- = N , where we
note m(wQ@P) = (QPN) = b and m(wPQ) = z. From the relations

above, yield

(2.17) —sinb+a) WiV
sin x w@
In the triangles w@QP and wN P, according to the law of sines, we obtain
. . " (b — . : T
S;Iégy _ smfZ\/‘[ a) and smLN y) _ smio;w a)’ where m(o310) — y and

m(P/QTI ) = a. From the last previous equalities, we obtain that
sin(b—y) wN

2.18
(2.18) siny  wQ
— sin(b in(b —
From (2.17) and (2.18), we have that SH.I( +2) = sm(. y), equiva-
sin x siny

lent to —sinysinbcosx — sinysinx cosb = sinx sinbcos y — sin  sin y cos b,
equivalent to sinbsin(x +y) = 0. Because b € (0°,180°), so sinb # 0, it
results that sin(z + y) = 0, from where = + y = 180°, which needs to be
proved. O
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Theorem 2.5. Let w be a point situated in the exterior of the parallelo-
gram MNPQ, so that wQ N Int MNPQ = wN N Int MNPQ = () and

wQP = wNP. If m(QPN) > 90°, AB L wM, BC' L wN, CD L wP and
DS 1 w@Q, then ABCD is a cyclic quadrilateral and w is the center of the
circumscribed circle of the ABC'D quadrilateral.

Proof. From AB 1 wM and DA 1 w(@, we obtain that the wM AQ quadri-
lateral is cyclic (Fig. 2.14), from where

(2.19) wAM = wQM
and
(2.20) wMQ = wAQ.

The quadrilateral wM BN is cyclic,

D
W therefore

(2.21) wBM = wN M.

Fig. 2.14

Because M NPQ is a parallelogram SO PQM PN M and from the hy-
pothesis we have wQP = wNP therefore wQM — WNM. Taking (2.19)

and (2.21) into account, we obtain that WAM = wBN7 so the triangle wAB
is isosceles, so

(2.22) wA = wB.
The quadrilateral wD@P is cyclic, which means that
(2.23) m(wDQ) + m(wPQ) = 180°.

According to Lemma 2.6 we have that m(wMQ) + m(wPQ) = 180° and

taking (2.20) and (2.23) into account, yield wAQ = wDQ, therefore the
triangle wAD is isosceles, so

(2.24) wA =wD.

The quadmlaterals wDQ@P and wCNP are cyclic, therefore wQP = wDP
and wNP = wCP. But, from the hypothesis we h have wQP = WNP P, and

then from the equalities above we deduce that wDP = wCP. Therefore the
triangle wC' D is isosceles, from where

(2.25) wD = wC.

From (2.16), (2.24) and (2.25), we have that the ABCD quadrilateral is
cyclic and w is the center of the circumscribed circle of the ABC' D quadri-
lateral. O

Remark 2.5. In the previous conditions, if @ = WND then we obtain
that wQM = wN M, because M N P() is a parallelogram.

According to the ideas from Case I, we have the marked areas in Fig. 2.15
for ¢ < 0 and in Fig. 2.16 for ¢ > 0 respectively.
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In this case, let M N PQ be a parallelogram and its center the origin of the
axis system (Fig. 2.17), where a > 0, b > 0 and ¢ < a.

Y B
M(c,b) y

Fig. 2.17

Theorem 2.6. Let M N PQ be a given parallelogram with m(Q/PTV) > 90°
(Fig. 2.17). The geometric locus of w points situated in the exterior of the
pamllelogmm/]\f\NPQ so that w@Q N Int MNPQ = wN N Int MNPQ = ()
and @ = w]\QTP 18:

b
a) if ¢ # - the hyperbola
(2.26) (H) ba? —by* — (a+ c)zy + b° + abc =0
intersected with the exterior of the parallelogram M N PQ;
62
b) if c = ——, the lines
a

b
(2.27) d':y:ax and d":y:—%m
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intersected with the exterior of the parallelogram M N PQ (in this situation,
MN PQ becomes a rhomb).

Proof. Let w(z,y) and we note m(@) = m(w/N\P) = «, the measures of
the angles formed by the lines wN, PN with Oz axis by 3, and - respectively
(Fig. 2.17).

o y+b
We have that myg = tg(180° — a) = , from where
r+a
y+0b
2.28 t = — .
( ) & r+a
2b y—2>b
On the other hand, mpy = tgy = and myy =tg8 = ——. Then
a+c T—a
a = f — 7, yields tg o = tg(8 — 7), equivalent to
y—2>b 2b
teor= 1tiﬁt_ﬁttgfy =
ghtey | y-b
r—a a-+c
from where
ay — ab + cy — 2bx + be
2.29 t = .
(2.29) & axr — ac + cx — ¢ + 2by — 2b?
From (2.28) and (2.29) after calculus, we obtain (2.26). O

Remark 2.6. The point 77 is situated at the intersection of lines QU of

a+c (a+c)a .
o T Ty T

) and T’(a, —W),

analogously. It is easily veri-

equation x = —a and SN of equation y = —
ac + a® + b?

b
ac+cE+b o act+cE+ b
V(-e——F—) Vle-——7F—)
fied that the p012nts T, T, V72 V' are situated on the hyperbola (H) given by
b b
(2.26) if ¢ # ——. If ¢ = ——, then the points V.V’ € d’ and T}, T" € d".
a a

T} has the coordinates T1< - a,

In the following, see the ideas that led to the proof of Theorem 2.2.

Theorem 2.7. Let MNPQ be a given parallelogram, M(c,b), N(a,b),
P(—¢,-b), Q(—a,—b), a >0,b>0,c<a, c<0, MS; L MN, ThU L
MN, MU 1L MQ, T15; L M@, N € 1154, PS L QP, uTr L QP,
PU" L PN, ST L PN, Q € ST’ (Fig. 2.15), w a point situated in
the exterior of the M N PQ parallelogram so that wM | AB, wN 1 BC,
wP L CD and w@ 1 DA.

The ABCD quadrilateral is cyclic and w is the center of the circumscribed
circle of the qandTilateml ABCD if and only if:

b
a) if ¢ # ——, w belongs to the intersection between the hyperbola (H)
a
given by (2.26) and the set [MS1ThU]U [PS'T'U'|\{M, P}(Fig. 2.15);
2

. b .
b) if c= - belongs to set [Ty M) U (PT'] (Fig. 2.15).
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Proof. Taking Lemma 2.5, Theorem 2.5, Lemma 2.6, Remark 2.5, Remark
2.6 and Theorem 2.6 into account, yield the demonstration. O

L/

3
\ &
M N S;
~ I\~ |V
S r U 7
~l]/S
0 "

S Y T

™~
U/
™~
Y v
T T

Fig. 2.18 Fig. 2.19

Theorem 2.8. Let MNPQ be a given parallelogram, M (c,b), N(a,b),
P(—¢,-b), Q(—a,—b),a>0,b>0,c<a, —c<a,c>0, 51V L MN,
WU 1L MN, UV 1L MQ, 151 L MQ, N € 'S, M € UV, Q € ThU,
PeVS, SV L QP, T'U L QP,U'V' L PN,T'S" L PN, Qe T'Y,
PeUV',NeTU, M eV'S (Fig. 2.15), and w a point situated in the
exterior of the M N PQ parallelogram, wM 1 AB, wN 1 BC, wP 1 CD
and w@ 1L DA.

The ABCD quadrilateral is cyclic and w is the center of the circumscribed
circle of the ABC'D quadrilateral if and only if

b2
a) if ¢ # ——, w belongs to the intersection between the hyperbola (H)
a

given by (2.26) and the set [SYTYUV]U [S'T'U'V'] (Fig. 2.16);

b2
b) if ¢ =—— w belongs to the set [TYV]U [V'T'] (Fig. 2.16).
a

Proof. From Lemma 2.5, Theorem 2.5, Lemma 2.6, Remark 2.5, Remark 2.6
and Theorem 2.6 yield the proof. (]

In the end, we withdraw the conclusion in Theorem 2.9.

Theorem 2.9. Let MNPQ be a give parallelogram, M(c,b), N(a,b),
P(—¢,-b), Q(—a,=b), a >0,b >0, c < a, —c < a, and w a point sit-
uated in the plane, wM 1 AB, wN 1 BC, wP 1 CD and w@ L DA.

(i) Let ¢ < 0 and MS L PQ, PT L PQ, S,T € Int MNPQ, MS; L
MN, QT; L MN, PS' 1 PQ, NT' L PQ, MU L MQ, QS L MQ,
PU' L PN, NS; L PN (see Fig. 2.18).
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Then the ABCD quadrilateral is cyclic and w is the center of the circum-
scribed circle of the ABC'D quadrilateral if and only if:
2

b
a) if ¢ # - w belongs to the set determinated by the intersec-

tion between the hyperbola (H) given by (2.4) and [MSPT|U [MSTh\U]U
[PS'T'U");
2

: b :
b) if ¢ =—— w belongs to the set [TH'T'| U[ST] (see Fig. 2.19).
a
T,

(ii) Let ¢ > 0 and T.U L PQ, S$1V L \ S\

PQ, S'V' 1L MN, T'U' L MN, v
UV 1L PN, T\S; L PN, S'T" 1. PN, V\ N
U'V' L PN (see Fig. 2.20). M
Then the ABCD quadrilateral is
cyclic and w is the center of the I
circumscribed circle of the ABCD
quadrilateral if and only if: AN
b2
a) if ¢ # ——, w belongs to s
a
the intersection between hyperbola (H ) 0 \ o
given by (2.4) and the [VSThU] U
VST, AN y
b2 v
b) if ¢ = W belongs to the \
set (V] U[S'T']. g
Fig. 2.20

b2
In conclusion, for ¢ # ——, ¢ < 0, the hyperbola (H) given by (2.4) has
a

got a branch that goes through the points 77, M, S, Q and another branch
goes through the points N, T, P,T7’. For ¢ > 0, a branch goes through the
points T, V, M, N, and another branch goes through the points Q, P, S, T".

Finally, we give the method of construction a figure determinated by a
point of geometrical locus.

Let M NPQ be a given Varignon’s parallelogram and w a point of the ge-
ometrical locus. The perpendicular in w to wM intersects the perpendicular
in w to w@ in A, and similarly are obtained the points B,C, D (see Fig.
2.1). So, we get the cyclic quadrilateral ABC'D, where w is the center of
the circumscribed circle.
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