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A Note About The Metrics Induced by

Truncated Dodecahedron And Truncated Icosahedron

Özcan Gelişgen, Temel Ermiş and Ibrahim Günaltılı

Abstract. Polyhedrons have been studied by mathematicians and ge-
ometers during many years, because of their symmetries. There are only
five regular convex polyhedra known as the Platonic solids. Semi-regular
convex polyhedron which are composed of two or more types of regular
polygons meeting in identical vertices are called Archimedean solids. There
are some relations between metrics and polyhedra. For example, it has been
shown that cube, octahedron, deltoidal icositetrahedron are maximum, taxi-
cab, Chinese Checker’s unit sphere, respectively. In this study, we introduce
two new metrics, and show that the spheres of the 3-dimensional analytical
space furnished by these metrics are truncated dodecahedron and truncated
icosahedron. Also we give some properties about these metrics.

1. Introduction

What is a polyhedron? This question is interestingly hard to answer
simply! A polyhedron is a three-dimensional figure made up of polygons.
When discussing polyhedra one will use the terms faces, edges and vertices.
Each polygonal part of the polyhedron is called a face. A line segment along
which two faces come together is called an edge. A point where several
edges and faces come together is called a vertex. Traditional polyhedra
consist of flat faces, straight edges, and vertices. There are many thinkers
that worked on polyhedra among the ancient Greeks. Early civilizations
worked out mathematics as problems and their solutions. Polyhedrons have
been studied by mathematicians, scientists during many years, because of
their symmetries. A polyhedron is called regular if all its faces are equal and
regular polygons. It is called semi-regular if all its faces are regular polygons
and all its vertices are equal. An irregular polyhedron is defined by polygons
that are composed of elements that are not all equal. A regular polyhedron
is called Platonic solid, a semi-regular polyhedron is called Archimedean
solid and an irregular polyhedron is called Catalan solid.
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As it is stated in [4] and [7], polyhedra have been used for explaining
the world around us in philosophical and scientific way. There are only five
regular convex polyhedra. These regular polyhedra were known by the An-
cient Greeks. They are generally known as the ”Platonic” or ”cosmic” solids
because Plato mentioned them in his dialogue Timeous, where each is associ-
ated with one of the five elements - the cube with earth, the icosahedron with
water, the octahedron with air, the tetrahedron with fire and the dodecahe-
dron with universe ( or with ether, the material of the heavens). The story
of the rediscovery of the Archimedean polyhedra during the Renaissance is
not that of the recovery of a ’lost’ classical text. Rather, it concerns the re-
discovery of actual mathematics, and there is a large component of human
muddle in what with hindsight might have been a purely rational process.
The pattern of publication indicates very clearly that we do not have a log-
ical progress in which each subsequent text contains all the Archimedean
solids found by its author’s predecessors. In fact, as far as we know, there
was no classical text recovered by Archimedes. The Archimedean solids
have that name because in his Collection, Pappus stated that Archimedes
had discovered thirteen solids whose faces were regular polygons of more
than one kind. Pappus then listed the numbers and types of faces of each
solid. Some of these polyhedra have been discovered many times. According
to Heron, the third solid on Pappus’ list, the cuboctahedron, was known to
Plato. During the Renaissance, and especially after the introduction of per-
spective into art, painters and craftsmen made pictures of platonic solids.
To vary their designs they sliced off the corners and edges of these solids,
naturally producing some of the Archimedean solids as a result. For more
detailed knowledge, see [4] and [7].

Minkowski geometry is non-Euclidean geometry in a finite number of
dimensions. Here the linear structure is the same as the Euclidean one but
distance is not uniform in all directions. That is, the points, lines and planes
are the same, and the angles are measured in the same way, but the distance
function is different. Instead of the usual sphere in Euclidean space, the
unit ball is a general symmetric convex set [13]. Some mathematicians have
been studied and improved metric space geometry. According to mentioned
researches it is found that unit spheres of these metrics are associated with
convex solids. For example, unit sphere of maximum metric is a cube which
is a Platonic Solid. Taxicab metric’s unit sphere is an octahedron, another
Platonic Solid. In [2, 3, 5, 6, 8, 9, 10, 11, 12] the authors give some metrics
which the spheres of the 3-dimensional analytical space furnished by these
metrics are some of Platonic solids, Archimedian solids and Catalan solids.
So there are some metrics which unit spheres are convex polyhedrons. That
is, convex polyhedrons are associated with some metrics. When a metric is
given, we can find its unit sphere in related space geometry. This enforce
us to the question ”Are there some metrics whose unit sphere is a convex
polyhedron?”. For this goal, firstly, the related polyhedra are placed in the
3-dimensional space in such a way that they are symmetric with respect
to the origin. And then the coordinates of vertices are found. Later one
can obtain metric which always supply plane equation related with solids
surface. In this study, we introduce two new metrics, and show that the
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spheres of the 3-dimensional analytical space furnished by these metrics
are truncated dodecahedron and truncated icosahedron. Also we give some
properties about these metrics.

2. Truncated Dodecahedron Metric and Some Properties

One type of convex polyhedrons is the Archimedean solids. The fifth book
of the “Synagoge” or “Collection” of the Greek mathematician Pappus of
Alexandria, who lived in the beginning of the fourth century AD, gives
the first known mention of the thirteen “Archimedean solids”. Although,
Archimedes makes no mention of these solids in any of his extant works,
Pappus lists this solids and attributes to Archimedes in his book [17].

An Archimedean solid is a symmetric, semiregular convex polyhedron
composed of two or more types of regular polygons meeting in identical ver-
tices. A polyhedron is called semiregular if its faces are all regular polygons
and its corners are alike. And, identical vertices are usually means that
for two taken vertices there must be an isometry of the entire solid that
transforms one vertex to the other.

It has been stated in [1], [4] and [14], seven of the 13 Archimedean solids
(the cuboctahedron, icosidodecahedron, truncated cube, truncated dodeca-
hedron, truncated octahedron, truncated icosahedron, and truncated tetra-
hedron) can be obtained by truncation of a Platonic solid.

Two additional solids (the (small) rhombicosidodecahedron and (small)
rhombicuboctahedron) can be obtained by expansion of a Platonic solid,
and two further solids (the great rhombicosidodecahedron and great rhom-
bicuboctahedron) can be obtained by expansion of one of the previous
9 Archimedean solids. It is sometimes stated that these four solids can
be obtained by truncation of other solids. The confusion originated with
Kepler himself, who used the terms ”truncated icosidodecahedron” and
”truncated cuboctahedron” for the great rhombicosidodecahedron and great
rhombicuboctahedron, respectively. However, truncation alone is not capa-
ble of producing these solids, but must be combined with distorting to turn
the resulting rectangles into squares .

The remaining two solids, the snub cube and snub dodecahedron, can be
obtained by moving the faces of a cube and dodecahedron outward while
giving each face a twist. The resulting spaces are then filled with ribbons of
equilateral triangles.

One of the Archimedean solids is the truncated dodecahedron. A trun-
cated dodecahedron is a polyhedron which has 12 regular decagonal faces,
20 regular triangular faces, 60 vertices and 90 edges. This polyhedron can
be formed from a dodecahedron by truncating (cutting off) the corners so
the pentagon faces become decagons and the corners become triangles. [15].
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Figure 1(a) Truncated dodecahedron Figure 1(b) Dodecahedron

We describe the metric that unit sphere is truncated dodecahedron as
following:

Definition 2.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in
R3.The distance function dTD : R3 × R3 → [0,∞) truncated dodecahedron
distance between P1 and P2 is defined by
dTD(P1, P2) =

max


8−ϕ
11 X12 + 8ϕ−9

11 max
{
ϕ(Y12 + Z12), 3ϕ+1

11 X12 + ϕ+7
5 Y12, X12 + Z12

}
,

8−ϕ
11 Y12 + 8ϕ−9

11 max
{
ϕ(X12 + Z12), 3ϕ+1

11 Y12 + ϕ+7
5 Z12, X12 + Y12

}
,

8−ϕ
11 Z12 + 8ϕ−9

11 max
{
ϕ(X12 + Y12), 3ϕ+1

11 Z12 + ϕ+7
5 X12, Y12 + Z12

}


where X12 = |x1 − x2|, Y12 = |y1 − y2|, Z12 = |z1 − z2| and ϕ = 1+
√

5
2 the

golden ratio.

According to truncated dodecahedron distance, there are three different
paths from P1 to P2. These paths are
i) union of three line segments each of which is parallel to a coordinate

axis.
ii) union of two line segments which one is parallel to a coordinate axis

and other line segment makes arctan(95030−20661
√

5
219010 ) angle with another co-

ordinate axis.
iii) union of two line segments which one is parallel to a coordinate axis

and other line segment makes arctan(5
√

5−9
8 ) angle with another coordinate

axis.
Thus truncated dodecahedron distance between P1 and P2 is for (i) 15−

√
5

22

times the sum of Euclidean lengths of three line segments, for (ii) 100−3
√

5
121

times the sum of Euclidean lengths of mentioned two line segments, and

for (iii) 5+7
√

5
22 times the sum of Euclidean lengths of mentioned two line

segments.
Figure 2 illustrates truncated dodecahedron way from P1 to P2 if maxi-

mum value is (15−
√

5
22 )(|x1 − x2|+ |y1 − y2|+ |z1 − z2|) ,

100−3
√

5
121

(
|y1 − y2|+ (1067

√
5−935

1810 ) |z1 − z2|
)

or 5+7
√

5
22

(
|y1 − y2|+ (3−

√
5) |x1 − x2|

)
.
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Figure 2: TD way from P1 to P2

Lemma 2.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two
points in R3. X12, Y12, Z12 denote |x1 − x2| , |y1 − y2| , |z1 − z2| , respec-
tively. Then

dTD(P1, P2) ≥ 8−ϕ
11 X12 + 8ϕ−9

11 max
{
ϕ(Y12 + Z12), 3ϕ+1

11 X12 + ϕ+7
5 Y12, X12 + Z12

}
,

dTD(P1, P2) ≥ 8−ϕ
11 Y12 + 8ϕ−9

11 max
{
ϕ(X12 + Z12), 3ϕ+1

11 Y12 + ϕ+7
5 Z12, X12 + Y12

}
,

dTD(P1, P2) ≥ 8−ϕ
11 Z12 + 8ϕ−9

11 max
{
ϕ(X12 + Y12), 3ϕ+1

11 Z12 + ϕ+7
5 X12, Y12 + Z12

}
.

Proof. Proof is trivial by the definition of maximum function.

Theorem 2.1. The distance function dTD is a metric. Also according to
dTD, the unit sphere is an truncated dodecahedron in R3.

Proof. Let dTD : R3×R3 → [0,∞) be the truncated dodecahedron distance
function and P1=(x1, y1, z1) , P2=(x2, y2, z2) and P3=(x3, y3, z3) are distinct
three points in R3. X12, Y12, Z12 denote |x1 − x2| , |y1 − y2| , |z1 − z2| ,
respectively. To show that dTD is a metric in R3, the following axioms hold
true for all P1, P2 and P3 ∈ R3.
M1) dTD(P1, P2) ≥ 0 and dTD(P1, P2) = 0 iff P1 = P2

M2) dTD(P1, P2) = dTD(P2, P1)
M3) dTD(P1, P3) ≤ dTD(P1, P2) + dTD(P2, P3).

Since absolute values is always nonnegative value dTD(P1, P2) ≥ 0. If
dTD(P1, P2) = 0 then there are possible three cases. These cases are

1) dTD(P1, P2) = 8−ϕ
11 X12+8ϕ−9

11 max
{
ϕ(Y12 + Z12), 3ϕ+1

11 X12 + ϕ+7
5 Y12, X12 + Z12

}
2) dTD(P1, P2) = 8−ϕ

11 Y12+8ϕ−9
11 max

{
ϕ(X12 + Z12), 3ϕ+1

11 Y12 + ϕ+7
5 Z12, X12 + Y12

}
3) dTD(P1, P2) = 8−ϕ

11 Z12+8ϕ−9
11 max

{
ϕ(X12 + Y12), 3ϕ+1

11 Z12 + ϕ+7
5 X12, Y12 + Z12

}
.

Case I: If

dTD(P1, P2) =
8− ϕ

11
X12+

8ϕ− 9

11
max

{
ϕ(Y12 + Z12),

3ϕ+ 1

11
X12 +

ϕ+ 7

5
Y12, X12 + Z12

}
,

then
8−ϕ
11 X12 + 8ϕ−9

11 max
{
ϕ(Y12 + Z12), 3ϕ+1

11 X12 + ϕ+7
5 Y12, X12 + Z12

}
=0

⇔ X12=0 and 8ϕ−9
11 max

{
ϕ(Y12 + Z12), 3ϕ+1

11 X12 + ϕ+7
5 Y12, X12 + Z12

}
=0

⇔ x1 = x2, y1 = y2, z1 = z2

⇔ (x1, y1, z1) = (x2, y2, z2)
⇔ P1 = P2

The other cases can be shown by similar way in Case I. Thus we get
dTD(P1, P2) = 0 iff P1 = P2.
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Since |x1 − x2| = |x2 − x1|, |y1 − y2|=|y2 − y1| and |z1 − z2| = |z2 − z1|,
obviously dTD(P1, P2) = dTD(P2, P1). That is, dTD is symmetric.
X13, Y13, Z13, X23, Y23, Z23 denote |x1 − x3| , |y1 − y3| , |z1 − z3| , |x2 − x3| ,

|y2 − y3| , |z2 − z3|, respectively. Then by using the property |a− b+ b− c| ≤
|a− b|+ |b− c| for a, b, c ∈R.

dTD(P1, P3)

= max


8−ϕ
11 X13 + 8ϕ−9

11 max
{
ϕ(Y13 + Z13), 3ϕ+1

11 X13 + ϕ+7
5 Y13, X13 + Z13

}
,

8−ϕ
11 Y13 + 8ϕ−9

11 max
{
ϕ(X13 + Z13), 3ϕ+1

11 Y13 + ϕ+7
5 Z13, X13 + Y13

}
,

8−ϕ
11 Z13 + 8ϕ−9

11 max
{
ϕ(X13 + Y13), 3ϕ+1

11 Z13 + ϕ+7
5 X13, Y13 + Z13

}


≤ max



8−ϕ
11 (X12 +X23) + 8ϕ−9

11 max


3ϕ+1

11 (X12 +X23) + ϕ+7
5 (Y12 + Y23) ,

ϕ(Y12 + Y23 + Z12 + Z13),
(X12 +X23 + Z12 + Z23)

 ,

8−ϕ
11 (Y12 + Y23) + 8ϕ−9

11 max


3ϕ+1

11 (Y12 + Y23) + ϕ+7
5 (Z12 + Z23) ,

ϕ(X12 +X23 + Z12 + Z13),
(X12 +X23 + Y12 + Y23)

 ,

8−ϕ
11 (Z12 + Z23) + 8ϕ−9

11 max


3ϕ+1

11 (Z12 + Z23) + ϕ+7
5 (X12 +X23) ,

ϕ(X12 +X23 + Y12 + Y23),
(Y12 + Y23 + Z12 + Z23)




=I.

Therefore one can easily find that I ≤ dTD(P1, P2) + dTD(P2, P3) from
Lemma 2.2. So dTD(P1, P3) ≤ dTD(P1, P2) + dTD(P2, P3). Consequently,
truncated dodecahedron distance is a metric in 3-dimensional analytical
space.
Finally, the set of all points X = (x, y, z) ∈ R3 that truncated dodecahedron
distance is 1 from O = (0, 0, 0) is STD =(x, y, z): max


8−ϕ
11 |x|+

8ϕ−9
11 max

{
ϕ(|y|+ |z|), 3ϕ+1

11 |x|+
ϕ+7

5 |y| , |x|+ |z|
}
,

8−ϕ
11 |y|+

8ϕ−9
11 max

{
ϕ(|x|+ |z|), 3ϕ+1

11 |y|+
ϕ+7

5 |z| , |x|+ |y|
}
,

8−ϕ
11 |z|+

8ϕ−9
11 max

{
ϕ(|x|+ |y|), 3ϕ+1

11 |z|+
ϕ+7

5 |x| , |y|+ |z|
}

=1

 .

Thus the graph of STD is as in the figure 3:

Figure 3 The unit sphere in terms of dTD: Truncated dodecahedron
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Corrolary 2.1. The equation of the truncated dodecahedron with center
(x0, y0, z0) and radius r is

max



8−ϕ
11 |x− x0|+ 8ϕ−9

11 max

{
ϕ(|y − y0|+ |z − z0|), |x− x0|+ |z − z0| ,

3ϕ+1
11 |x− x0|+ ϕ+7

5 |y − y0|

}
,

8−ϕ
11 |y − y0|+ 8ϕ−9

11 max

{
ϕ(|x− x0|+ |z − z0|), |x− x0|+ |y − y0| ,

3ϕ+1
11 |y − y0|+ ϕ+7

5 |z − z0|

}
,

8−ϕ
11 |z − z0|+ 8ϕ−9

11 max

{
ϕ(|x− x0|+ |y − y0|), |y − y0|+ |z − z0| ,

3ϕ+1
11 |z − z0|+ ϕ+7

5 |x− x0|

}


= r

which is a polyhedron which has 32 faces and 60 vertices. Coordinates
of the vertices are translation to (x0, y0, z0) all posible +/- sign compo-
nents of the points (0, 3α−1

2 r, r), (r, 0, 3α−1
2 r), (3α−1

2 r, r, 0), (3α−1
2 r, αr, 2αr),

(2αr, 3α−1
2 r, αr), (αr, 2αr, 3α−1

2 r), (αr, (1− α) r, α+1
2 r), (α+1

2 r, αr, (1− α) r)

and ((1− α) r, α+1
2 r, αr) where α =

√
5

5 .

Lemma 2.2. Let l be the line through the points P1 = (x1, y1, z1) and P2 =
(x2, y2, z2) in the analytical 3-dimensional space and dE denote the Euclidean
metric. If l has direction vector (p, q, r), then

dTD(P1, P2) = µ(P1P2)dE(P1, P2)

where µ(P1P2) =

max


8−ϕ
11 |p|+

8ϕ−9
11 max

{
ϕ(|q|+ |r|), 3ϕ+1

11 |p|+
ϕ+7

5 |q| , |p|+ |r|
}
,

8−ϕ
11 |q|+

8ϕ−9
11 max

{
ϕ(|p|+ |r|), 3ϕ+1

11 |q|+
ϕ+7

5 |r| , |p|+ |q|
}
,

8−ϕ
11 |r|+

8ϕ−9
11 max

{
ϕ(|p|+ |q|), 3ϕ+1

11 |r|+
ϕ+7

5 |p| , |q|+ |r|
}
√

p2 + q2 + r2
.

Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq, z1 − z2 = λr,
r ∈ R. Thus,dTD(P1, P2) is equal to

|λ|

max


8−ϕ
11 |p|+

8ϕ−9
11 max

{
ϕ(|q|+ |r|), 3ϕ+1

11 |p|+
ϕ+7

5 |q| , |p|+ |r|
}
,

8−ϕ
11 |q|+

8ϕ−9
11 max

{
ϕ(|p|+ |r|), 3ϕ+1

11 |q|+
ϕ+7

5 |r| , |p|+ |q|
}
,

8−ϕ
11 |r|+

8ϕ−9
11 max

{
ϕ(|p|+ |q|), 3ϕ+1

11 |r|+
ϕ+7

5 |p| , |q|+ |r|
}



and dE(A,B) = |λ|
√
p2 + q2 + r2 which implies the required result.

The above lemma says that dTD-distance along any line is some positive
constant multiple of Euclidean distance along same line. Thus, one can
immediately state the following corollaries:

Corrolary 2.2. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dTD(P1, X) = dTD(P2, X) .

Corrolary 2.3. If P1, P2 and X are any three distinct collinear points in
the real 3-dimensional space, then

dTD(X,P1) / dTD(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dTD−distances along a line are the
same.
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3. Truncated Icosahedron Metric and Some Properties

The truncated icosahedron is an Archimedean solid, one of 13 convex
isogonal nonprismatic solids whose faces are two or more types of regular
polygons. It has 12 regular pentagonal faces, 20 regular hexagonal faces,
60 vertices and 90 edges. It is the Goldberg polyhedron GV(1,1), con-
taining pentagonal and hexagonal faces. This geometry is associated with
footballs (soccer balls) typically patterned with white hexagons and black
pentagons. Geodesic domes such as those whose architecture Richard Buck-
minister Fuller pioneered are often based on this structure. It also corre-
sponds to the geometry of the fullerene C60 (”buckyball”) molecule [16] (See
Figure 4(a)-(d)).

Figure 4(a)truncated icosahedron Figure 4(b) Icosahedron

Figure 4(c)tru. icosahedron and soccer balls Figure 4(d) C60 molecule

We describe the metric that unit sphere is truncated dodecahedron as
following:

Definition 3.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points
in R3.The distance function dTI : R3 × R3 → [0,∞) truncated icosahedron
distance between P1 and P2 is defined by
dTI(P1, P2) =

(ϕ− 2) max



X12 + max

{
(2− ϕ) (X12 + Z12) , (ϕ− 2) (Y12 + Z12) ,

(31−16ϕ
19 )X12 + 12ϕ−9

19 Y12

}
,

Y12 + max

{
(2− ϕ) (X12 + Y12) , (ϕ− 2) (X12 + Z12) ,

(31−16ϕ
19 )Y12 + 12ϕ−9

19 Z12

}
,

Z12 + max

{
(2− ϕ) (Y12 + Z12) , (ϕ− 2) (X12 + Y12) ,

(31−16ϕ
19 )Z12 + 12ϕ−9

19 X12

}


where X12 = |x1 − x2|, Y12 = |y1 − y2|, Z12 = |z1 − z2| and ϕ = 1+

√
5

2 the
golden ratio.

According to truncated icosahedron distance, there are three different
paths from P1 to P2. These paths are
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i) union of two line segments which one is parallel to a coordinate axis and

other line segment makes arctan(11126
√

5−8155
25992 ) angle with another coordinate

axis.
ii) union of two line segments which one is parallel to a coordinate axis

and other line segment makes arctan(33
√

5+50
10 ) angle with another coordinate

axis.
iii) union of three line segments which one is parallel to a coordinate

axis and other line segments makes arctan(1
2) angle with another coordinate

axes.
Thus truncated dodecahedron distance between P1 and P2 is for (i) 50

√
5−82

38
times the sum of Euclidean lengths of mentioned two line segments, for (ii)
3
√

5−5
2 times the sum of Euclidean lengths of mentioned two line segments,

and for (iii)
√

5−1
2 times the sum of Euclidean lengths of three line segments.

Figure 5 shows that the path between P1 and P2 in case of the maximum is
50
√

5−82
38

(
|y1 − y2|+ 72

√
5+36

361 |z1 − z2|
)
, 3
√

5−5
2

(
|y1 − y2|+ 25−11

√
5

10 |x1 − x2|
)

or
√

5−1
2

(
|y1 − y2|+

√
5−1
2 (|x1 − x2|+ |z1 − z2|)

)
.

Figure 5: TI way from P1 to P2

Lemma 3.1. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be distinct two
points in R3. Then

dTI(P1, P2) ≥ (ϕ− 2)

(
X12 + max

{
(2− ϕ) (X12 + Z12) , (ϕ− 2) (Y12 + Z12) ,

(31−16ϕ
19 )X12 + 12ϕ−9

19 Y12

})
dTI(P1, P2) ≥ (ϕ− 2)

(
Y12 + max

{
(2− ϕ) (X12 + Y12) , (ϕ− 2) (X12 + Z12) ,

(31−16ϕ
19 )Y12 + 12ϕ−9

19 Z12

})
dTI(P1, P2) ≥ (ϕ− 2)

(
Z12 + max

{
(2− ϕ) (Y12 + Z12) , (ϕ− 2) (X12 + Y12) ,

(31−16ϕ
19 )Z12 + 12ϕ−9

19 X12

})
.

where X12=|x1 − x2|, Y12=|y1 − y2|, Z12=|z1 − z2| and ϕ = 1+
√

5
2 the golden

ratio.

Proof. Proof is trivial by the definition of maximum function.

Theorem 3.1. The distance function dTI is a metric. Also according to
dTI , unit sphere is a truncated icosahedron in R3.

Proof. One can easily show that the truncated icosahedron distance func-
tion satisfies the metric axioms by similar way in Theorem 2.3.
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Consequently, the set of all points X = (x, y, z) ∈ R3 that truncated
icosahedron distance is 1 from O = (0, 0, 0) is STI =

(x, y, z): (ϕ− 2) max



|x|+ max

{
(2− ϕ) (|x|+ |z|) , (ϕ− 2) (|y|+ |z|) ,

(31−16ϕ
19 ) |x|+ 12ϕ−9

19 |y|

}
,

|y|+ max

{
(2− ϕ) (|x|+ |y|) , (ϕ− 2) (|x|+ |z|) ,

(31−16ϕ
19 ) |y|+ 12ϕ−9

19 |z|

}
,

|z|+ max

{
(2− ϕ) (|y|+ |z|) , (ϕ− 2) (|x|+ |y|) ,

(31−16ϕ
19 ) |z|+ 12ϕ−9

19 |x|

}


=1


.

Thus the graph of STI is as in the figure 6:

Figure 6 The unit sphere in terms of dTI : Truncated icosahedron

Corrolary 3.1. The equation of the truncated icosahedron with center (x0, y0, z0)
and radius r is

(ϕ− 2) max



|x− x0|+ max

{
(2− ϕ) (|x− x0|+ |z − z0|) , (ϕ− 2) (|y − y0|+ |z − z0|) ,

(31−16ϕ
19 ) |x− x0|+ 12ϕ−9

19 |y − y0|

}
,

|y − y0|+ max

{
(2− ϕ) (|x− x0|+ |y − y0|) , (ϕ− 2) (|x− x0|+ |z − z0|) ,

(31−16ϕ
19 ) |y − y0|+ 12ϕ−9

19 |z − z0|

}
,

|z − z0|+ max

{
(2− ϕ) (|y − y0|+ |z − z0|) , (ϕ− 2) (|x− x0|+ |y − y0|) ,

(31−16ϕ
19 ) |z − z0|+ 12ϕ−9

19 |x− x0|

}


=r

which is a polyhedron which has 30 faces and 60 vertices. Coordinates of the
vertices are translation to (x0, y0, z0) all posible +/- sign components of the

points
(
β
2 r, 0, r

)
,
(
r, β2 r, 0

)
,
(

0, r, β2 r
)
,
(
βr, 1

3r,
3β+4

6 r
)
,
(

3β+4
6 r, βr, 1

3r
)
,(

1
3r,

3β+4
6 r, βr

)
,
(
β
2 r,

2
3r,
√

5
3 r
)
,
(√

5
3 r,

β
2 r,

2
3r
)

and
(

2
3r,
√

5
3 r,

β
2 r
)
, where β =

√
5−1
3 .

Lemma 3.2. Let l be the line through the points P1 = (x1, y1, z1) and P2 =
(x2, y2, z2) in the analytical 3-dimensional space and dE denote the Euclidean
metric. If l has direction vector (p, q, r), then

dTI(P1, P2) = µ(P1P2)dE(P1, P2)
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where

µ(P1P2) =

(ϕ− 2) max



|p|+ max

{
(2− ϕ) (|p|+ |r|) , (ϕ− 2) (|q|+ |r|) ,

(31−16ϕ
19 ) |p|+ 12ϕ−9

19 |q|

}
,

|q|+ max

{
(2− ϕ) (|p|+ |q|) , (ϕ− 2) (|p|+ |r|) ,

(31−16ϕ
19 ) |q|+ 12ϕ−9

19 |r|

}
,

|r|+ max

{
(2− ϕ) (|q|+ |r|) , (ϕ− 2) (|p|+ |q|) ,

(31−16ϕ
19 ) |r|+ 12ϕ−9

19 |p|

}

√
p2 + q2 + r2

.

Proof. Equation of l gives us x1 − x2 = λp, y1 − y2 = λq, z1 − z2 = λr,
r ∈ R. Thus,

dTI(P1, P2) = |λ|

(ϕ− 2) max



|p|+ max

{
(2− ϕ) (|p|+ |r|) , (ϕ− 2) (|q|+ |r|) ,

(31−16ϕ
19 ) |p|+ 12ϕ−9

19 |q|

}
,

|q|+ max

{
(2− ϕ) (|p|+ |q|) , (ϕ− 2) (|p|+ |r|) ,

(31−16ϕ
19 ) |q|+ 12ϕ−9

19 |r|

}
,

|r|+ max

{
(2− ϕ) (|q|+ |r|) , (ϕ− 2) (|p|+ |q|) ,

(31−16ϕ
19 ) |r|+ 12ϕ−9

19 |p|

}




and dE(A,B) = |λ|

√
p2 + q2 + r2 which implies the required result.

The above lemma says that dRT -distance along any line is some positive
constant multiple of Euclidean distance along same line. Thus, one can
immediately state the following corollaries:

Corrolary 3.2. If P1, P2 and X are any three collinear points in R3, then
dE(P1, X) = dE(P2, X) if and only if dTI(P1, X) = dTI(P2, X) .

Corrolary 3.3. If P1, P2 and X are any three distinct collinear points in
the real 3-dimensional space, then

dTI(X,P1) / dTI(X,P2) = dE(X,P1) / dE(X,P2) .

That is, the ratios of the Euclidean and dTI−distances along a line are the
same.
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[3] Can, Z., Gelişgen, Ö. and Kaya, R., On the Metrics Induced by Icosidodecahedron and
Rhombic Triacontahedron, Scientific and Professional Journal of the Croatian Society
for Geometry and Graphics (KoG) 19 (2015), 17–23.

[4] Cromwell, P., Polyhedra, Cambridge University Press, 1999.
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