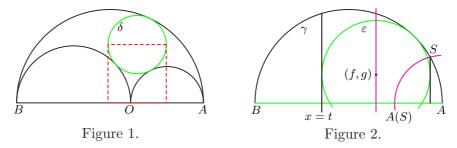


AN EQUILATERAL TRIANGLE IN THE ARBELOS

HIROSHI OKUMURA

Abstract. An equilateral triangle is derived from the incircle of the arbelos.

Let us consider an arbelos with two inner semicircles with diameters AOand BO for a point O on the segment AB in the plane. Let δ be the incircle of the arbelos of radius d. The distance between the center of δ and the line AB equals 2d by Pappus chain theorem. Therefore the segment AB, the diameter of δ parallel to AB and the tangents of δ perpendicular to AB form a square (see Figure 1) [1]. In this note we show that the same circle also yields an equilateral triangle. Let γ be the outer semicircle of the arbelos. The circle with center P passing through Q is denoted by P(Q) for points P and Q. We use the following theorem (see Figure 2).



Theorem 1. If a circle ε touches the semicircle γ from the inside and S is the point on γ such that ε touches the perpendicular from S to AB from the side opposite to A, then the pencil of circles determined by ε and AB is orthogonal to the pencil of circles determined by the circle A(S) and the perpendicular from the center of ε to AB.

Proof. It is sufficient to show that the circles ε and A(S) are orthogonal. Let c be the radius of γ . We use a rectangular coordinate system with origin at the center of γ such that A has coordinates (c, 0). We assume that s is the x-coordinate of the points S and the circle ε touches the line x = t from

(2010) Mathematics Subject Classification: 51M04, 51M20

Received: 25.05.2016. In revised form: 7.09.2016. Accepted: 20.09.2016.

Keywords and phrases: arbelos, pencil of circles, limiting point, equilateral triangle,

the side opposite to B and has radius e and center with coordinates (f, g). Then we have

(1)
$$2e = s - t$$
, $2f = s + t$,
and from $f^2 + g^2 = (c - e)^2$,
(2) $f^2 + g^2 - e^2 = c^2 - 2ce$.
While

(3)
$$|AS|^2 = (c-s)^2 + c^2 - s^2 = 2c(c-s).$$

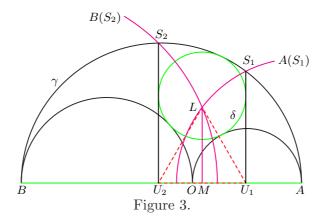
The square of the distance between the centers of ε and A(S) is $(c-f)^2 + g^2$. Using (3), (2), (1) in this order, we have

$$\begin{aligned} (c-f)^2 + g^2 - e^2 - |AS|^2 &= c^2 - 2cf + (f^2 + g^2 - e^2) - 2c(c-s) \\ &= c^2 - 2cf + (c^2 - 2ce) - 2c(c-s) = -2cf - 2ce + 2cs \\ &= -c(s+t) - c(s-t) + 2cs = 0. \end{aligned}$$

Therefore A(S) and ε are orthogonal.

Corollary 1. Let us assume that a circle ε touches the semicircle γ from the inside and has no point in common with the line AB and S is the point on γ such that ε touches the perpendicular from S to AB from the side opposite to A. Then a point L is one of the limiting points of the pencil of circles determined by ε and AB if and only if L lies on the circle A(S) and the perpendicular from the center of ε to AB.

The if part of the corollary can be found in [2, Theorem 3]. We now consider the arbelos (see Figure 3).



Theorem 2. Let S_i (i = 1, 2) be the points on γ such that U_i is the foot of perpendicular from S_i to AB and S_iU_i touches the circle δ and the points A, S_1 , S_2 lie on γ in this order. Then the circles $A(S_1)$ and $B(S_2)$ intersect, and if L is one of the points of intersection, the triangle U_1LU_2 is equilateral.

Proof. The circles $A(S_1)$ and $B(S_2)$ meet in the limiting points of the pencil determined by ε and AB by Corollary 1. Let L be one of points of intersection, and let M be the foot of perpendicular from L to AB. Since the power of M with respect to δ equals $|LM|^2$ and the distance between the center of δ and AB equals 2d, where recall d being the radius of δ ,

94

 $|LM| = \sqrt{(2d+d)(2d-d)} = \sqrt{3}d$. While $|U_1U_2| = 2d$. Therefore the triangle U_1LU_2 is equilateral.

References

- [1] Gutierrez A., Archimedes' Arbelos and Square 2, Go Geometry web site, http://gogeometry.blogspot.jp/2008/12/archimedes-arbelos-and-square-2.html
- [2] Okumura, H., An inscribed square of a right triangle associated with an arbelos, Glob. J. Adv. Class. Mod. Geom., 4(2) (2015) 125–135.

DEPARTMENT OF MATHEMATICS YAMATO UNIVERSITY 2-5-1 Katayama Suita Osaka 564-0082, JAPAN *E-mail address*: okumura.hiroshi@yamato-u.ac.jp