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MORE CHARACTERIZATIONS OF

EXTANGENTIAL QUADRILATERALS

MARTIN JOSEFSSON

Abstract. We prove ten necessary and su¢ cient conditions for a con-
vex quadrilateral to have an excircle that concerns angles, areas, circles or
concurrent lines.

1. Introduction

An extangential quadrilateral is a convex quadrilateral with an excircle,
i.e. an external circle tangent to the extensions of all four sides, see Figure
1. A convex quadrilateral can at most have one excircle, and as with all
classes of quadrilaterals, there are characterizations to determine when a
quadrilateral has this property. In [7] we proved �ve metric characterizations
of extangential quadrilaterals and compared them to similar conditions for
tangential quadrilaterals (a quadrilateral with an incircle). In this paper
we will prove ten more characterizations of extangential quadrilaterals that
concerns angles, areas, circles or concurrent lines. A few corresponding
theorems in tangential quadrilaterals were proved in [8].

Figure 1. An extangential quadrilateral and its excircle
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We remind the reader that the Swiss mathematician Jakob Steiner proved
in 1846 that a convex quadrilateral ABCD has an excircle outside one of
the vertices A and C if and only if (see [3, p.318])

(1) AB +BC = CD +DA:

By symmetry there is an excircle outside one of the vertices B and D if and
only if

(2) DA+AB = BC + CD:

In these pairs of opposite vertices, the excircle is always outside the one with
the biggest vertex angle.

2. Characterizations concerning angles or areas

We begin with a counterpart to Theorem 1 in [8] for an extangential
quadrilateral.

Theorem 2.1. Let the internal angle bisectors of two opposite angles in the
convex quadrilateral ABCD intersect at an exterior point J . Then it is an
extangential quadrilateral if and only if \AJD = \CJB.

Figure 2. Intersecting angle bisectors

Proof. ()) Let ABCD be an extangential quadrilateral where the exten-
sions of opposite sides intersect at E and F (see Figure 2). Then the internal
angle bisectors at two opposite vertex angles and the external angle bisec-
tors at the other two vertex angles intersect at the excenter J (center of the
excircle).1 We assume that the excircle is outside of the vertex C (the proofs
in the other three cases are the same). Then \EDJ = ��D

2 , \FBJ = ��B
2

and \BCJ = � � C
2 . Let us denote � = \CJB and � = \AJD. Using the

1This is proved in the same way as the corresponding property in a triangle.
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sum of angles in triangles BCJ and ADJ yields

� � � =
�
� �

�
� � C

2
+
� �B
2

��
�
�
� �

�
A

2
+D +

� �D
2

��
=
A+B + C +D

2
� � = 2�

2
� � = 0;

where we also used the sum of angles in ABCD. Hence we get \AJD =
\CJB.
(() Let \AJD = \CJB in a convex quadrilateral where the angle bi-

sectors of A and C intersect at a point J outside of C. We assume without
loss of generality that AB > AD. (If instead there is equality, then the
assumption \AJD = \CJB can only be ful�lled in a kite. But then the
two angle bisectors don�t intersect since they coincide.) First we prove that
CD > CB. We construct a point D0 on AB and D00 on CB or its extension
such that AD0 = AD and CD00 = CD, see Figure 2. Then

\CJD � \BJC = \AJC + \AJD � \CJB = \AJC > 0:
Thus

\CJD > \BJC ) \CJD00 > \BJC
which in turn imply that CD00 > CB and therefore CD > CB.
Now triangles ADJ and AD0J are congruent, so DJ = D0J , and triangles

CDJ and CD00J are congruent, so DJ = D00J . Thus D0J = D00J . We also
have that \D00JC = \DJC and \AJD = \AJD0. Whence
(3) \D00JC � \CJB = \DJC � \AJD ) \D00JB = \AJC:
In addition, \CJB = \AJD0 (= \AJD), so
(4) \CJD0 + \D0JB = \AJC + \CJD0 ) \D0JB = \AJC:
From (3) and (4) we conclude that \D00JB = \D0JB. Thus, since D0J =
D00J and BJ is a common side, triangles D0JB and D00JB are congruent,
so D0B = D00B. Hence

AB +BC � CD �DA = AD0 +D0B +BC �D00B �BC �AD0 = 0
which proves that ABCD is an extangential quadrilateral with an excircle
outside of A or C according to (1). �

An alternative and equivalent formulation of this angle characterization
exists. Since

\AJD = \CJB , \CJD = \AJB
the theorem could as well have had the same formulation except for the angle
equality, that instead would have been that \AJB = \CJD. The rewrite
between these two equalities is simply a matter of adding or subtracting the
common angle AJC.
At �rst glance it may seem remarkable that the angle equality is the same

in all four cases of extangential quadrilaterals outside any of the vertices.
But transforming the vertices (in several steps) according to A ! B !
C ! D ! A we see that there are only two cases of angle equalities (since
for instance \AJD = \DJA). These are \AJD = \CJB and \AJB =
\CJD, which we just noted to be equivalent.
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There is the following related characterization to the one in Theorem 2.1,
where the equality is between four triangle areas instead. We reviewed
the corresponding characterization for a tangential quadrilateral in [8, p.3].
That theorem was proved in [10] and [11, pp.134�135], where the latter
attributes it to V. Pop and I. Gavrea. Note that by symmetry, there is
a similar necessary and su¢ cient condition for the other pair of opposite
vertex angles.

Theorem 2.2. A convex quadrilateral ABCD has an excircle outside one
of the vertices A or C if and only if

SAJB + SBJC = SCJD + SDJA

where J is the intersection of the angle bisectors at A and C, and SAJB
stands for the area of triangle AJB.

Proof. ()) The direct part of the theorem is a trivial corollary to (1).
Simply multiply both sides of that equation by 1

2�, where � is the exradius
(the radius in the excircle), and the equality follows.
(() Conversely, if the equality between the four areas holds in a convex

quadrilateral, we construct points D0 and D00 as in the proof of Theorem 2.1.
Then

SAJD0 + SD0JB + SD00JC � SD00JB = SCJD + SDJA:

But triangles AJD0 and DJA as well as triangles D00JC and CJD are
congruent. Thus we get that SD0JB = SD00JB. Then

BJ � JD0 sin\D0JB
2

=
BJ � JD00 sin\D00JB

2
:

From the two pairs of congruent triangles, we also have that JD0 = JD =
JD00. Thus sin\D0JB = sin\D00JB and it follows that \D0JB = \D00JB
since these are both acute angles. This proves that triangles D0JB and
D00JB are congruent, so D0B = D00B. Hence we �nally have

AB +BC � CD �DA = AD0 +D0B +BC �D00B �BC �AD0 = 0

which proves that ABCD is an extangential quadrilateral with an excircle
outside of A or C according to (1). �

3. Characterizations concerning circles

The �rst characterization regarding circles is about incircles in the two
subtriangles created by a diagonal. The direct part of (i) in this theorem
was a problem solved in [2, p.116].

Theorem 3.1. Consider a convex quadrilateral ABCD.
(i) Let the incircles in triangles ABD and CBD be tangent to the diagonal
BD at S and T respectively. Then the quadrilateral has an excircle outside
one of the vertices A or C if and only if BT = DS.
(ii) Let the incircles in triangles BAC and DAC be tangent to the diagonal
AC at U and V respectively. Then the quadrilateral has an excircle outside
one of the vertices B or D if and only if AV = CU .
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Figure 3. Incircles in two subtriangles

Proof. We prove the �rst statement, the second is proved in the same way.
Let the incircles be tangent to the sides BA, AD, DC and CB at W , X, Y
and Z respectively. We assume without loss of generality that DS < DT .
Then AW = XA,WB = BS, BZ = BT , ZC = CY , Y D = DT , DX = DS
(see Figure 3) according to the two tangent theorem (the two tangents to a
circle through an external point have the same lengths). Thus

AB +BC � CD �DA = AW +WB +BZ + ZC � CY � Y D �DX �AX
= BS +BT �DT �DS
= BT + ST +BT �DS � ST �DS
= 2(BT �DS):

Hence we have that

AB +BC = CD +DA , BT = DS

which proves that the quadrilateral has an excircle outside one of the vertices
A or C if and only if BT = DS according to (1). �

Since the line segments ST and UV are common to the considered dis-
tances in pairs, alternative equivalent statements would have been that the
excircle is outside one of the vertices A or C if and only if BS = DT , and
that it is outside one of B or D if and only if AU = CV .
The next characterization is a counterpart to Theorem 1 in [6] for an

extangential quadrilateral.

Theorem 3.2. A convex quadrilateral ABCD has an excircle outside one
of the vertices A or C if and only if it holds that
(i) the incircle in triangle ABD and the excircle to triangle CBD are tan-
gent to the diagonal BD at the same point, or
(ii) the incircle in triangle CBD and the excircle to triangle ABD are tan-
gent to the diagonal BD at the same point.
A convex quadrilateral ABCD has an excircle outside one of the vertices B
or D if and only if it holds that
(iii) the incircle in triangle BAC and the excircle to triangle DAC are tan-
gent to the diagonal AC at the same point, or
(iv) the incircle in triangle DAC and the excircle to triangle BAC are tan-
gent to the diagonal AC at the same point.
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Figure 4. Tangency points on diagonal BD

Proof. Since the four proofs are so similar, we only do one of them. Let�s
prove (ii). The length of the segments on the sides of a triangle determined
by the points of tangency of the incircle and the excircle have well-known
formulas (see [5, p.184]). If the incircle and excircle are tangent to BD at
T and S0 respectively (see Figure 4), then

2(BT�BS0) = (BD+BC�CD)�(BD+AD�AB) = AB+BC�CD�DA:

Thus

T � S0 , BT = BS0 , AB +BC = CD +DA

which proves that the two circles are tangent at the same point on BD if
and only if the quadrilateral has an excircle outside one of the vertices A or
C according to (1). �

Now we prove the corresponding characterization to Theorem 5 in [8] for
an extangential quadrilateral.

Theorem 3.3. In a convex quadrilateral ABCD that is not a trapezoid,2

let the extensions of opposite sides intersect at E and F .
(i) The quadrilateral has an excircle outside of A if and only if the incircle
in triangle AEF and the excircle to triangle CEF are tangent to EF at the
same point.
(ii) The quadrilateral has an excircle outside of C if and only if the incircle
in triangle CEF and the excircle to triangle AEF are tangent to EF at the
same point.
(iii) The quadrilateral has an excircle outside of B if and only if the incircle
in triangle BEF and the excircle to triangle DEF are tangent to EF at the
same point.
(iv) The quadrilateral has an excircle outside of D if and only if the incircle
in triangle DEF and the excircle to triangle BEF are tangent to EF at the
same point.

2And thus neither of the special cases parallelogram, rhombus, rectangle nor a square.
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Figure 5. Tangency points on EF
Proof. We prove (ii), the other proofs are similar. Let the incircle and
excircle be tangent to EF at G and H respectively (see Figure 5). In the
same way as in the proof of Theorem 3.2, we have

2(FH�FG) = (EF+AE�AF )�(EF+CF�CE) = AE�AF�CF+CE:
Hence

G � H , FG = FH , AE + CE = AF + CF:

According to equation (5) in [7], this proves that the two circles are tangent
to EF at the same point if and only if the quadrilateral ABCD has an
excircle outside of A or C. It is evident that the excircle to the quadrilateral
must be outside of the vertex where the incircle to triangle CEF is, since
that is the only place where it can be tangent to the extensions of all four
sides of the quadrilateral (the opposite sides diverge outside of the other
vertex A). �

The next characterization is the counterpart to Theorem 6 in [8] for an
extangential quadrilateral. There are four di¤erent versions of this theorem
depending on outside which vertex the excircle can be located, but we just
formulate one of them and trust the reader can make the appropriate changes
of letters for the other three cases.

Theorem 3.4. In a convex quadrilateral ABCD that is not a trapezoid, let
the extensions of opposite sides intersect at E and F . Suppose C is a vertex
such that no parts except one point of the sides of triangle CEF coincides
with the sides of ABCD. Let the excircle outside of EF to triangle AEF
and the incircle in triangle CEF be tangent to the extensions of AD, AB,
DC, BC at K, L, M , N respectively. Then ABCD is an extangential
quadrilateral with an excircle outside of C if and only if KLMN is a cyclic
quadrilateral.

Proof. ()) In an extangential quadrilateral ABCD, let AB and DC in-
tersect at E, and AD and BC intersect at F . We have that AK = AL
according to the two tangent theorem, so \AKL = ��A

2 in the isosceles
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triangle AKL (see Figure 6). It further holds that \AFB = ��A�B and
if the incircle in CEF is tangent to EF at G, then FK = FG = FN . Thus
\AKN = \FKN = ��A�B

2 by the exterior angle theorem. This yields

\NKL = \AKL� \AKN =
� �A
2

� � �A�B
2

=
B

2
:

In the same way CM = CN , so \CMN = ��C
2 , and \AED = � �A�D.

Then, since EL = EG = EM , it follows that \EML = ��A�D
2 . Thus

\NML = ��\CMN �\EML = �� � � C
2

� � �A�D
2

=
A+ C +D

2
:

Hence two opposite angles in KLMN have the sum

\NKL+ \NML = B

2
+
A+ C +D

2
=
2�

2
= �:

This proves that KLMN is a cyclic quadrilateral according to a well-known
characterization.

Figure 6. Here KLMN is a cyclic quadrilateral

(() We do an indirect proof of the converse. If ABCD is not an extan-
gential quadrilateral, assume that the incircle in CEF and the excircle to
AEF are tangent to EF at G and H respectively (these are di¤erent points
by Theorem 3.3, see Figure 7). We assume without loss of generality that
FH < FG. Then FK = FH < FG = FN , so \AKN = \FKN > ��A�B

2
since a longer side in a triangle is opposite a larger angle. Thus

\NKL = \AKL� \AKN <
� �A
2

� � �A�B
2

=
B

2
:

We also have EL = EH > EG = EM , so \EML > ��A�D
2 , and we deduce

that

\NML = ��\CMN �\EML < �� � � C
2

� � �A�D
2

=
A+ C +D

2
:
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Hence two opposite angles in KLMN have the sum

\NKL+ \NML < A+B + C +D

2
= �

which proves that KLMN is not a cyclic quadrilateral. �

Figure 7. Here KLMN is not a cyclic quadrilateral

Corollary 3.1. If ABCD is an extangential quadrilateral, then its excircle
and the circumcircle to quadrilateral KLMN in Theorem 3.4 are concentric.

Proof. Triangles KFN and LEM are isosceles, so their perpendicular
bisectors to the sides KN and ML and the angle bisectors to the angles
KFN and LEM are identical in pairs. Hence they have the same point of
intersection J , see Figure 6, so the two circles are concentric. �

What happens if we in Theorem 3.4 instead consider the incircle in trian-
gle AEF and the excircle tangent to EF in triangle CEF? It will probably
not come as a big surprise that the result is the same; this too gives a char-
acterization of extangential quadrilaterals, see Figure 8. Since the method
of proof is the same, we only state the theorem here, and let the reader
record the proof.

Theorem 3.5. In a convex quadrilateral ABCD that is not a trapezoid, let
the extensions of opposite sides intersect at E and F . Suppose C is a vertex
such that no parts except one point of the sides of triangle CEF coincides
with the sides of ABCD. Let the excircle outside of EF to triangle AEF
and the incircle in triangle CEF be tangent to the extensions of AD, AB,
DC, BC at K 0, L0, M 0, N 0 respectively. Then ABCD is an extangential
quadrilateral with an excircle outside of C if and only if K 0L0M 0N 0 is a
cyclic quadrilateral.
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Figure 8. The cyclic quadrilateral K 0L0M 0N 0

Again it is easy to deduce that there are two concentric circles (see Fig-
ure 8):

Corollary 3.2. If ABCD is an extangential quadrilateral, then its excircle
and the circumcircle to quadrilateral K 0L0M 0N 0 in Theorem 3.5 are concen-
tric.

4. Characterizations concerning concurrent lines

The �rst characterization regarding concurrent lines is about the same
con�guration as the one in Theorem 3.4.

Theorem 4.1. In a convex quadrilateral ABCD that is not a trapezoid, let
the extensions of opposite sides intersect at E and F . Suppose C is a vertex
such that no parts except one point of the sides of triangle CEF coincides
with the sides of ABCD. Let the excircle outside of EF to triangle AEF
and the incircle in triangle CEF be tangent to the extensions of AD, AB,
DC, BC at K, L, M , N respectively. Then ABCD is an extangential
quadrilateral with an excircle outside of C if and only if KN , LM and AC
are concurrent.

Proof. ()) Let KN and LM intersect AC at Q1 and Q2 respectively in
an extangential quadrilateral, see Figure 9. We apply Menelaus�theorem in
triangle ACF with the transversal KNQ1 to get3

(5)
FK

KA
� AQ1
Q1C

� CN
NF

= 1 ) AQ1
Q1C

=
KA

CN

where FK = FG = NF according to the two tangent theorem and the
fact that the excircle to triangle AEF and the incircle in triangle CEF are

3We use non-directed distances, in which case one of the sides in Menelaus�theorem is
a +1 instead of a �1.
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tangent to EF at the same point G by Theorem 3.3. Using the transversal
LMQ2 in triangle ACE yields in the same way

(6)
EL

LA
� AQ2
Q2C

� CM
ME

= 1 ) AQ2
Q2C

=
LA

CM

since EL = EG = ME. But we also have that KA = LA and CM = CN
according to the two tangent theorem. Thus

AQ1
Q1C

=
AQ2
Q2C

which means that the two points Q1 and Q2 divide the line segment AC in
the same ratio. Hence they must coincide, so we have proved that KN , LM
and AC are concurrent at Q1 � Q2.

Figure 9. Points of intersection on AC
(() If ABCD is not an extangential quadrilateral, then the incircle in

triangle CEF and the excircle to triangle AEF are tangent to EF at dif-
ferent points G and H respectively (Theorem 3.3). Assume without loss
of generality that EG < EH (see Figure 7). The �rst equality in (5) still
holds, but since we now have that FK = FH < FG = NF , it yields

FK � AQ1
Q1C

= NF � KA
CN

> FK � KA
CN

so we have

(7)
AQ1
Q1C

>
KA

CN
:

The �rst equality in (6) also still holds, and applying EL = EH > EG =
EM , we get

AQ2
Q2C

<
LA

CM
=
KA

CN
<
AQ1
Q1C

:

We used that KA = LA and CM = CN still holds, and applied (7) to
get the last inequality. Thus Q2 and Q1 divide AC in di¤erent ratios, so
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Q1 6= Q2. This proves that the line segments KN , LM and AC are not
concurrent. �

Figure 10. The lines K 0N 0 and L0M 0 intersect on AC
In the same way that we got a similar characterization when we exchanged

the roles of the incircle and excircle in Theorem 3.4, which gave Theorem 3.5,
we have a similar characterization to Theorem 4.1 when making that change
(see Figure 10). The following theorem can be proved using the same method
we used to prove Theorem 4.1, so the proof is omitted.

Theorem 4.2. In a convex quadrilateral ABCD that is not a trapezoid, let
the extensions of opposite sides intersect at E and F . Suppose C is a vertex
such that no parts except one point of the sides of triangle CEF coincides
with the sides of ABCD. Let the excircle outside of EF to triangle AEF
and the incircle in triangle CEF be tangent to the extensions of AD, AB,
DC, BC at K 0, L0, M 0, N 0 respectively. Then ABCD is an extangential
quadrilateral with an excircle outside of C if and only if K 0N 0, L0M 0 and
AC are concurrent.

In the beginning of May in 2010, a problem was posted at Art of Problem
Solving [9] that is the direct part of the following necessary and su¢ cient
condition for when a convex quadrilateral has an excircle. Three days later, a
short solution using insimilicenter, exsimilicenter and the Monge-d�Alembert
theorem was given by Luis González. Here we give a more elementary proof
of the direct part and prove that the converse is true as well.

Theorem 4.3. In a convex quadrilateral ABCD, let I1 and I2 be the incen-
ters in triangles BCD and DAB respectively. Then the quadrilateral has an
excircle outside of A or C if and only if AC, BD and I1I2 are concurrent.

Proof. ()) In an extangential quadrilateral where the sides satisfy AB +
BC = CD +DA, let P 0 be the intersection between BD and I1I2, and let
J be the center of the excircle (which we assume without loss of generality
is outside of the vertex C). Also, let P1, P2, P3, P4, P5, P6 be points on
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BD, AB, CD or their extensions where the two incircles and the excircle are
tangent to these lines (see Figure 11). Then we have three pairs of similar
triangles, JAP3 � I2AP4, I2P 0P1 � I1P 0P2 and I1CP5 � JCP6. Thus

JA

I2A
=
JP3
I2P4

;
I2P

0

I1P 0
=
I2P1
I1P2

;
I1C

JC
=
I1P5
JP6

:

Forming the product of these yields

JA

AI2
� I2P

0

P 0I1
� I1C
CJ

=
JP3
I2P4

� I2P1
I1P2

� I1P5
JP6

=
JP3
I2P1

� I2P1
I1P2

� I1P2
JP3

= 1;

where we used that I2P1 = I2P4, I1P5 = I1P2 and JP3 = JP6 (these are
radii in the three circles). According to the converse of Menelaus�theorem
applied in triangle I1I2J with the transversal AC, the points C, P 0 and A
are collinear. Since we already know that BD and I1I2 intersect at P 0, this
proves that AC, BD and I1I2 are concurrent at P 0.

Figure 11. P 0 is the intersection of BD and I1I2

(() In a convex quadrilateral where AC, BD and I1I2 are concurrent
at a point P , let the lines AI2 and I1C intersect at a point J 0. We use
the notation d(J 0; AB) for the distance between the point J 0 and the line
AB. Also, let rABD be the inradius in triangle ABD. The similarities used
in the �rst part of the proof still hold if we exchange the exradius for the
appropriate distances between J 0 and a side or its extension. Applying the
direct part of Menelaus�theorem yields

1 =
J 0A

AI2
� I2P
PI1

� I1C
CJ 0

=
d(J 0; AB)

rABD
� rABD
rBCD

� rBCD
d(J 0; CD)

=
d(J 0; AB)

d(J 0; CD)
:

Thus we conclude that d(J 0; AB) = d(J 0; CD).
But we might as well consider similar triangles where the normals from J 0

are drawn to AD and BC or their extensions instead (see Figure 12). Then
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we get

1 =
J 0A

AI2
� I2P
PI1

� I1C
CJ 0

=
d(J 0; AD)

rABD
� rABD
rBCD

� rBCD
d(J 0; BC)

=
d(J 0; AD)

d(J 0; BC)
:

Whence d(J 0; AD) = d(J 0; BC). A third option is to draw one normal to
AD and one to CD. The �nal result from Menelaus�theorem this time is the
equality d(J 0; AD) = d(J 0; CD). Combining the three equalities regarding
those distances, we have

d(J 0; AB) = d(J 0; CD) = d(J 0; AD) = d(J 0; BC):

This means that the point J 0 is equidistant from the extensions of the sides
in the convex quadrilateral ABCD. Hence J 0 is the center in a circle tan-
gent to the side extensions, which proves that ABCD is an extangential
quadrilateral. �

Figure 12. Here AC, BD and I1I2 are concurrent at P
By symmetry there is a similar necessary and su¢ cient condition for an

excircle outside one of the other two vertices.
We note that the same con�guration with two subtriangle incircles and

an extangential quadrilateral was the subject of the �nal problem at the
International Mathematical Olympiad in 2008 (problem G7 on the short
list). The problem, which was proposed by Vladimir Shmarov from Russia,
can be reformulated in the following way (with notations as in Figure 11):
Suppose that ABCD is an extangential quadrilateral with an excircle out-

side of C. Let the incircles in triangles ABD and CBD be tangent to the
diagonal BD at P1 and P2, and have incenters I1 and I2 respectively. Prove
that the lines AP2, CP1 and I1I2 concur in a point on the circumference of
the excircle.
The o¢ cial solution to this beautiful problem appears in [1, pp.40�41],

where you can also �nd the original formulation of the problem. A similar
solution was given in [2, pp.175�177].
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