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CLASSIFYING SETS OF THREE CIRCUMFERENCES

BASED ON POWER THEOREM

ROVILSON MAFALDA

Abstract. This paper presents the theoretical framework and imple-
mentation of a method based on the power theorem to identify sets of three
circumferences α, β and γ in any topological arrangement named configu-
rations. This method assigns a vector V to each set αβγ, which consists of
ten parameters that describe the lowest power in the subsets αβ, αγ and
βγ. Also, describe the relatives powers of centers of them and the power of
its radical center. Considering the potential occurrence of great topological
variety of the sets αβγ in a largest cluster of circumferences, this method
can be used in search and classification processes.

1. INTRODUCTION

When given three circumferences α, β and γ whose coordinates of centers
are (x1, y1), (x2, y2) and (x3, y3) and whose radii are r1, r2 and r3 respec-
tively, the Apollonius problem is to find tangent circumferences to them.
Naming the center and radius of the searched circumference for x, y and r,
the most direct method to obtain the solutions of this problem is to solve
the system of three quadratic equations in three unknowns described by
equations 1,2 e 3.

(1) (x− x1)
2 + (y − y1)

2 − (r ± r1)
2 = 0.

(2) (x− x2)
2 + (y − y2)

2 − (r ± r2)
2 = 0.

(3) (x− x3)
2 + (y − y3)

2 − (r ± r3)
2 = 0.

The conditions to be satisfied by the circumferences that are tangent to α,
β and γ can be understood by noting that the distance between the centers
of two circumferences tangent is equal to the sum or difference of their radii.
————————————–
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If tangents are internal the condition is subtraction, and if they are ex-
ternal the condition is sum.

As these two conditions can be checked for the three circumferences the
problem may have 23 = 8 solutions [2]. Others solution methods to this
problem and its implications are mentioned in reference [11], and one of
them was used by me in [16] and [17].

An important property of this set of solutions is that the center P of the
smaller radius circumference, named σ, is the closest point to α, β and γ
according to a specific distance orientation. Four possible orientations of
distance are shown in Figure 1.
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Figure 1. Shortest distance orientation: a) three positive
orientations; b) three negative orientations; c) two positive
orientations and one negative; d) two negative orientations
and one positive.

The positive orientation indicates that σ and one of three given circum-
ferences are external tangents. The negative orientation indicates that σ
and one of three given circumferences are internal tangents, not considering
for example if α is inside σ or σ is inside α.

Voronoi diagrams are geometric structures whose construction are closely
related with the shortest distance and its orientation. These diagrams di-
vide a cluster of circumferences in regions of influence of each one of them.
The boundaries of these regions are arcs of hyperbolas that intersect at
points which are, each one, three circumferences nearest, according to the
considered orientation of shortest distance.

A recurring problem in the construction of these diagrams is that αβγ
has a great topological and geometrical variety and, without a systematic
method that considers many possible cases that can be occur, it is difficult
filter specific type sets in a largest clusters. For example, in a sparse cluster,
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we may think that the most expected orientation to shortest distance is
positive to the three given circumferences, but it is not necessarily true,
as exemplified in Figure 2. In Figure 2a) the shortest distance has three
positive orientations and in Figure 2b) it has two positive orientations and
one negative.
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Figure 2. Orientations of shortest distances: a) three pos-
itive orientations; b) two positive orientations and one neg-
ative; c) three positive orientations and d) three negative
orientations.

Considering a dense cluster we may think again that the most expected
orientation to the shortest distance is negative to the three given circum-
ferences but, it is not necessarily true as suggested in Figures 2c) and 2d).
In Figure 2c) situation the shortest distance has three positive orientations
and in Figure 2d) there is only one possibility to three negative orientations.

The examples of Figure 2 shows that the shortest distance to α, β and γ
depends on the topology and geometry of the set. Because of this, studies in
which is necessary to calculate the closest point of three circumferences have
been considered clusters composed by sets that are topologically and geo-
metrically homogeneous. For example, chronologically, in references [9],[10],
[11], [12] and [13] are considered disjoints and intercepting sets, but not
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those where one circumference is inside the other. These studies consider
only sets that admit a tangent circumference whose center has three positive
distance orientations as shown in Figures 1a) and 1c). Similarly, in reference
[14] are considered sets where two circumferences are inside the other but,
about these two, one cannot be inside the other.

The selection of particular type sets in a cluster first appeared in reference
[15]. Here, are considered sets of circumferences where two of them are
inside another, but these two cannot be one inside the other, because this
case has no solution. The selection of sets is done so that they may be a
valid configuration, that is, have a solution.

The greatest variety of sets of circumferences considered in a study ap-
pears in the references [5], [8] and [7]. In these studies are considered sets in
which circumferences can be intersecting or not, have a different radii and,
in [7], they can contain others. In [5] and [8] is considered the Inversion and
radius adjustment operation to find the centers of the smaller radius tangent
circumference. This method requires that at least one of the three circum-
ferences have the smallest radius among the three given. In this method the
topology of the desired solution is given as an initial condition but, this is
not a garantee that this solution is really calculated. The proposed algo-
rithm in [7], as in [15], uses a sweepline to identify in a cluster, specific sets
of three circumferences. These sets may contain secant circumferences and
one inside the other but, they must have a different radii.

Considering the growth potential of the studies related to sets of three
circumferences, this paper presents a study to enumerate their topological
variety and a automatic method to classify them. Section 2 gives an overview
of methods for classifying sets of three circumferences in the literature and
highlight aspects that are important for this study. In sections 3.1 and 3.2
we describe the use of power theorem to classify sets formed by two and
three circumferences and we make them count. In section 4 we describe
the proposed method as well, the vector V calculations for each one of the
27 kinds of sets identified. In addition, are given some examples of how to
identify the position of the smallest radius tangent circumference at some
type of sets. In section 5 we draw the final remarks and conclusions of this
study.

2. CLASSIFICATION METHODS

The oldest method for classifying sets of three geometric elements in-
cluding points, lines and circumferences found in literature dates from the
eighteenth century and is due to L. Gaultier de Tours [6]. In this work are
listed 33 cases to the problem to find circumferences tangent to three ele-
ments. The case where the three elements are circumferences is one among
the 33 cases listed. The purpose of this classification is to associate the
number of solutions to the tangency conditions. For example, in the case
where the three conditions are ”tangent to a circumference” the number of
solutions is between 2 and 8.

In the method proposed in reference [18] there are 46 configurations for
sets of 3 circumferences grouped into 13 categories. The first four categories
are Division I, Division II, Division III and Division IV. The others are
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named A1, A2, A3; B; C1, C2; D,E and F . Any category in this method
is composed by an specific topological relationship among three circumfer-
ences. For example, Division I if composed by ”three not secant circumfer-
ences”. The purpose of this classification method is to enumerate from any
configuration the number of solutions. For example, none of three configu-
rations in B category have 5 solutions.

In the classification method formulated in reference [1] there are 27 con-
figurations for sets of 3 circumferences. This classification method follow the
formulation presented in reference [18]. The new element in this proposal
is the use of geometric transformation Inversion to rearrange some configu-
rations formed by three circumferences that, in this method, are now listed
as formed by two lines and a circumference or three lines. Thus, the 46
configuration formed by three circumferences listed in the previous method
are reduced in this method to 27. The other 19 cases are now listed as
configurations formed by two lines and a circumference or 3 lines. Finally,
the 27 configurations listed are grouped into 9 categories, according to the
number of solutions ranging from ”zero” to 8.

These two classification methods, references [18] and [1], follows the prin-
ciples initiated in reference [6]. They improved the way the circumferences
are grouped but, without altering its purpose, which is to enumerate the
number of possible solutions for each configuration. These methods are im-
portant in studies and researches related with Plane Geometry. Therefore,
to verify the number of solutions through a computer program it is first
necessary identify this configuration unequivocally. In the references [18]
and [1] there are only two configurations of three circumferences that have
no solution but, as shown in Figure 3, intuitively we find three configura-
tions. It is clear that a computer program to be able to analyze sets of three
circumferences is necessary to know all of these variations.

From the computational point of view, in reference [8] the authors pro-
pose a method of classification using the fact that topologically a solution
and one of the three given circumferences can be external or may be internal
tangents. When these relationships are considered for the three circumfer-
ences it reaches up to 27 different configurations. After this, considering
that the three circumferences have different radii, only 20 configurations are
valid, since they admit solutions. These 20 configurations are organized into
10 groups called operators. The are three types of operators: O,X and ∆.
The are operator O means that a circumference solution and a circumference
configuration are external tangents. The operator X means that a circum-
ference solution and a circumference configuration are internal tangents, but
this circumference contain a circumference solution. The operator ∆ means
that a circumference configuration and a circumference solution are internal
tangents, but this circumference contain a circumference configuration.

The algorithm proposed here operates with three circumferences with
different radii and ordered in sequence. First, the algorithm performs the
adjustment of radii so that a configuration is transformed in a problem where
are given one point P and two circumferences. Then, taking the point P as
an inversion center, the problem is transformed in the case where they build
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Figure 3. Configuration without solution a); configuration
without solution b); configuration without solution c).

up the tangent lines to two circumferences and whose number of solutions
is 2 or 4.

This algorithm requires two input informations: three circumferences
G0, G1 and G2 ordered according to their radii and the topological arrange-
ment of the desired solution, for example, ∆∆∆. Note that these symbols
means that the desired solution is internal to the three generators but, in
the paper it is not explained how the desired solution topology choices is
made according to a given set of generators. For example, the generators
G0, G1 and G2 ordered and the topological arrangement ∆∆∆ do not guar-
antee that the desired solution is one that has a smaller radius, as shown in
Figure 4.

The solution of the smallest radius s1 is inside the α, β and γ in Figure 4a)
and is outside the α and the internal to β and γ in Figure 4b). Its shown that
the topology of the desired solution is possible for multiple generator sets
and it means that without a previous analysis of the geometry and topology
of the three generators it can not guarantee that the obtained solution is
the one that has a smallest radius. Also, in this method, the radii of the
circumferences must to be distinct and, in practical situations this is not
always possible.

3. PROPOSED METHOD

The mentioned methods previously are based on geometrical and some
topological aspects of the sets but they do not consider that it can have
many configurations. The method we are looking must be able to identify
any configuration of three circumference unequivocally, must be fast and
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Figure 4. a) Solution S1 internal to α, β and γ; b) Solution
S1 external to α and internal to β and γ.

simple so that the information that specifies the configurations must be
minimal and quickly obtained.

In pursuit of this goal, a method proposed here has beginnings, with the
analysis of subsets and sets of circumferences in a way that any of them can
be unambiguously characterized by a fewest number of parameters. Also,
we indicate how to calculate them in a non explicit way.

3.1. Two circumferences sets. If we take two tangent circumferences,
secant, not secant or concentric and added others conveniently we get two
types of sets called coaxial and radial. According to these relative positions,
the sets formed are shown in Figure 5. Sets a, b and c are coaxial and d is
radial [3], [4].

The generative principle and definitions of coaxial and radial sets are 3.1
and 3.2 respectively.

Definition 3.1. Let ∆ a line and α a circumference. It is called coaxial the

set composed by circumferences that admit with α, ∆ as its radical axis.

Definition 3.2. Let α a circumference with radius r and center O. It is

called radial the set composed by concentric circumferences with α.

Coaxial sets have two subsets named branches, left and right, which def-
inition is 3.3.

Definition 3.3. Given a coaxial set, it is called branches the subsets of

circumferences which centers are on the right or the left to the radical line

according to the considered direction.

The circumferences α and β are in different branches as shown in Figure
5a and Figure 5b. The circumferences α and β are in the same branch in
Figure 5c. In a intercepting set there is a neutral circumference whose center
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Figure 5. Relative positions of circumferences and the
formed type sets.

belong to it radical line ∆. A coaxial set can be defined by one or two of
their branches.

3.1.1. The lowest power property. The coaxial sets shown in Figure 6 can
be identified by a property named Lowest Power Point expressed by a point
named Lp. The existence of this point and its properties can be demon-
strated by the theorem 3.1.
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Figure 6. Lowest power point’s of coaxial sets.

Theorem 3.1. Given a coaxial set αβ which centers are the points A and

B respectively, there is a point, named Lp, that has the lowest power among



Classifying sets of three circumferences based on power theorem 55

all points of the radical axis ∆. This point results from the intersection of

the straights ∆ and AB.

Proof. Let P the point where the straight AB intersects the radical axis
∆. The power of P relative to the set is negative if it’s internal, positive if
it’s external to the circumferences and null if it’s belong to circumferences.
Let Q 6= P another point in ∆. The line segment QP is the edge of a
triangle which other side is the line segment AP or BP . By the Pythagorean
theorem, the hypotenuses QA and QB are larger than the edges QP or AP
respectively. Thus, by the power definition Pw(Q,αβ) > Pw(P,αβ), ∀Q ∈ ∆.

Corrolary 3.1. If Lp has a null, positive or negative power to αβ then the

coaxial set is tangent, not secant or secant respectively.

3.1.2. Power of once circumference center to another. The lowest power
property characterize coaxial sets but does not indicate whether the circum-
ferences which define the set are in the same branch or not. To accurately
identify the relative position between two circumferences this method con-
siders the relative position of their centers.

When considering the relative positions of the two tangent circumferences
as well the dimensions of their radii we find four possible situations illus-
trated in Figure 7 and described below.
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Figure 7. Tangent set: relative positions of two circumfer-
ences centers.

(1) Pw(A;β) > 0∧Pw(B;α) > 0. This indicates that α and β are in differ-
ent branches and that A and B are external to β and α respectively.
In this situation, they may have equal or different radii as shown in
Figure 7a.
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(2) Pw(A;β) > 0 ∧ Pw(B;α) < 0. This indicates that α and β are in the
same branch and that B is internal to α and A is external to β. In
this situation, the radius of α is better than β as shown in Figure
7b.

(3) Pw(A;β) > 0 ∧ Pw(B;α) = 0. This indicates that α and β are in the
same branch and that A belongs to β and B is internal to α. In
this situation, the α radius is equal to the diameter of β as shown in
Figure 7c.

(4) Pw(A;β) < 0 ∧ Pw(B;α) < 0. This indicates that α and β are in
the same branch and that B is internal to α and A is internal to β.
In this situation, the α radius is shorter than the diameter of β as
shown in Figure 7d.

When considering the relative positions of the two secant circumferences
as well the dimensions of their radii we find six possible situations illustrated
in Figure 8 and described below.
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Figure 8. Secant set: relative positions of two circumfer-
ences centers.

(1) Pw(A;β) = 0 ∧ Pw(B;α) = 0. This indicates that α and β are in
different branches and that B ∈ α while A ∈ β. In this situation,
the α and β radii are equal as shown in figure 8a.

(2) Pw(A;β) < 0 ∧ Pw(B;α) = 0. This indicate that α and β are in
different branches and that B ∈ α while A is internal to β. In this
situation, the radius of α is shorter than β radius as shown in figure
8b.

(3) Pw(A;β) > 0 ∧ Pw(B;α) = 0. This indicates that α and β are in
different branches and that B ∈ α while A is external to β. In this
situation, the radius of α is bigger than β radius as shown in figure
8c.
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(4) Pw(A;β) > 0 ∧ Pw(B;α) < 0. This indicates that α and β are in
different branches and that B is internal to α while A is external to
β. In this situation, the radius of α is bigger than β radius as shown
in figure 8d.

(5) Pw(A;β) < 0 ∧ Pw(B;α) < 0. This indicates that α and β are in the
same or in different branches and that B is internal to α while A is
internal to β. In the case where α and β are in the same branch, the
radius of α is bigger than β radius. In the case where α and β are
in different branches, the radii of the α and β are equal as shown in
figure 8e.

(6) Pw(A;β) > 0 ∧ Pow(B;α) > 0. This indicates that α and β are
in different branches and that A and B are external to β and α
respectively. In this situation, the circumferences α and β can have
equal or different radii as shown in figure 8f .

When considering the relative positions of the two not secant circumfer-
ences as well the dimensions of their radii we find four possible situations
illustrated in figure 9 and described below.
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Figure 9. Not secant set: relative positions of two circum-
ferences centers.

(1) Pw(A;β) > 0∧Pw(B;α) > 0. This indicates that α and β are in differ-
ent branches and that B and A are external to α and β respectively.
In this situation, α and β can have equal or different radii as shown
in figure 9a.

(2) Pw(A;β) > 0 ∧ Pw(B;α) < 0. This indicates that α and β are in
different branches and that B is internal to α while A is external to
β. In this situation, the radius of α is bigger than β radius as shown
in figure 9b.
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(3) Pw(A;β) > 0 ∧ Pw(B;α) = 0. This indicates that α and β are in
different branches and that and thatB ∈ α while A is external to β.
In this situation, the radius of α is necessarily bigger than β radius
as shown in figure 9c.

(4) Pw(A;β) < 0 ∧ Pw(B;α) < 0. This indicates that α and β are in the
same branch and that B is internal to α while A is internal to β. In
this situation, the radius of α is bigger than β radius as shown in
figure 9d.

When considering the relative positions of the two circumferences centers
in a radial set is possible the only case illustrated in figure 10. In this set, for
any two circumferences α and β, Pw(A;β) < 0∧Pow(B;α) < 0. This indicate
that B and A points are internal to α and β respectively but, this does not
indicate that A and B are coincident.

α
β

A = B

Figure 10. Radial set: relative positions of two circumfer-
ences centers.

3.2. Three circumferences sets. In this method, configuration is a set of
three circumferences and, cases are its variations depending on the relative
positions of their centers. The number of configurations is obtained by
combining the coaxial sets and radial set.

The configurations are grouped into two main groups. The group sets
for which the radical center is defined and the group sets for which the
radical center is not defined. The group sets for wich the radical center is
not defined is composed by two subgroups: configurations that have aligned
centers and that have concentricities. The configurations that defines three
parallel radicals axis have aligned centers of three circumferences. If the
configurations have only one radical axis the circumferences belong to the
same coaxial set. Similarly, the configurations that defines two parallel
radical axis have one concentricity while those that do not define any radical
axis have three concentricity.

The definition of radical center, Rc, used in this study is 3.4. The existence
conditions for which the radical center is defined is shown in proposition 3.1.

Definition 3.4. Given three or more circumferences, if there is a point

which has the same power to them, it is called radical center.

Proposition 3.1. If three circumferences they do have not centers aligned

or have concentricity their radical center is defined.
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Proof. Let ∆1, ∆2 and ∆3 the radical axis of the sets αβ, αγ and βγ
respectively. Let O the point where ∆1 and ∆2 intersect. Let P the point
where ∆1 and ∆3 intersect. Let Q the points where ∆2 and ∆3 intersect.
According to definition 3.4, the point O has the same power for α, β and γ.
The point P has the same power for α, β and γ. The point Q has the same
power for α, β and γ. Then, O = P = Q.

3.2.1. Defined radical center. The configurations for which the radical center
is defined are listed in Table 1. They are the result of combinations of not
secant, secant and tangent pairs. The radical center of configurations 1 to
8 has a exclusive power. In configuration 9 there are cases where the power
of the radical center is positive or null. In configuration 10 there are cases
where the power of the radical center is positive, negative or null. These
properties are stated in the propositions 3.2 to 3.6.

Table 1. Configurations with defined radical center.

Configuration Not secant Tangent Secant Concentric Cases

1 3 0 0 0 20
2 2 1 0 0 40
3 2 0 1 0 60
4 1 2 0 0 40
5 1 0 2 0 84
6 1 1 1 0 96
7 0 3 0 0 20
8 0 2 1 0 60
9 0 1 2 0 84
10 0 0 3 0 56

Proposition 3.2. Let a set of three circumferences formed by a secant pair,

a tangent pair and not secant pair. If there is a radical center it has positive

power.

Proof. The radical axis in a secant pair has positive power in all points
except in the common chord where it has a negative power and null power at
intersection points. The radical axis of the tangent pair has positive power
in all its points except at the tangency point where it is null. The radical
axis of the not secant pair has positive power in all of its points. So,if there
a radical center its have a positive power.

Corrolary 3.2. Given three coaxial sets, if one of them is not secant, the

power of the radical center, if it is defined, is positive.

This corollary applies to configurations 1,2,3,4,5 of table 1.

Proposition 3.3. Given three coaxial tangents sets the power of the radical

center, if it is defined, is positive.

Proof. The radical axis of the tangent sets has a null power at the tangency
point and positive in the remaining points. This type pair have only one
common point. Then,if it is defined, the power of the radical center is
positive.
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Proposition 3.4. Given two tangent sets and one secant, the power of the

radical center is positive.

Proof. The radical axis of the tangent sets has a null power at the point
of tangency and positive in the remaining points. The radical axis of the
secant set has negative power in the common chord and has a null power at
the intersection points and positive in the remaining points. As the three
sets have no common area or point, if there is a radical center defined, its
power is positive.

Proposition 3.5. Given two secant sets and one tangent the power of the

radical center, if it is defined, is positive or null to them.

Proof. The radical axes of secant sets has a negative power in the com-
mon chord, has a null power at the intersection points and positive in the
remaining points. The radical axis of tangent set has a null power at the
intersection point and positive power in remaining points. In the first case,
the sets have no common point. In this case, the radical center has a posi-
tive power. In another case, the three sets have a common point, the radical
center. In this case, the radical center has a null power.

Proposition 3.6. Given three secant sets, the power of the radical center,

if it is defined, is positive, negative or null.

Proof. The radical axis of secant sets has a negative power in the common
chord, has a null power at the intersection points and positive in the remain-
ing points. In the first and second possibilities, the sets share a common
area. In the first situation, the chords intersect within in the common area.
In this case, the power of the radical center is negative for the sets. In the
second situation, the radical axis intersects in a border of the common area,
the radical center. In this case, the power of the radical center is null. In
the third case, the sets do not share a common area and the radical axes
intersects at a common point. In this case, the power of the radical center
is positive.

The propositions 3.2 to 3.6 explain the power of radical center in all
cases where it is defined. The positive power of the radical center occurs
in ten configurations and in eight exclusively. There are two configurations
in which occur null power and in only one case where power of the radical
center is negative.

Configurations 1 to 8 have an exclusive power. Any of these configurations
have a single type of power for the radical center if it is defined. The
configuration 9 has two possibilities for the power of its radical center: null
or positive and configuration 10 have three possibilities: positive, negative
or null. In the case where Pw(rc) < 0, the three sets are secant and there is
only one possibility to a topological arrangement.

In the case where Pw(rc) = 0, there are two possibilities for topological
arrangement. In the first case, the three sets are secant. In the second case,
two sets are tangent and one is secant. In these two possibilities they have
a common point. In the case where Pw(rc) > 0, the three sets have no
common area or point. The Table 2 shows the percentage of configurations
according to the power of the radical center.
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Table 2. Number of configurations according to radical cen-
ter power.

Radical center power Number of config. Percentage

Pw(rc) < 0 1/3 3,3 %

Pw(rc) = 0 (1/2)+(1/3) 8,3 %

Pw(rc) > 0 8+(1/2)+(1/3) 88,3 %

The data in Table 2 means that the sets of three circumferences that have
positive power are much more abundant than other types. The numbers 1/2
and 1/3 means half part and the third part of cases in a configuration.

3.2.2. The relative power between coaxial sets. In a set of three circumfer-
ences one coaxial set can have its relative position to another described by
the lowest power point. For example, let a configuration 2 and Lp(αβ) the
lowest power point of coaxial set αβ. The position of this set relative to
γ circumference is described by the Lp(αβ)γ parameter as shown in Figure
11. In Figure 11a, Lp(αβ)γ has a positive power and in Figure 11b it has
a negative power. Considering the circumferences α, β and γ one can have
parameters Lp(αβ)γ, Lp(αγ)β and Lp(βγ)α. These parameters are considered
secondary.

α
α

β

β

γγ

Lp

Lp

a) b)

Figure 11. Relative power between a coaxial set and the
another circumference: a) positive power and b) negative
power.

3.2.3. Counting cases. The count of cases in each configuration listed in the
tables 1 and 3 were made by combining, in a appropriate way, the topological
types of sets listed in Figures 7, 8, 9.

The counting process for the configurations formed by three coaxial sets
of the same type, which have 4 topological types is obtained by combining
C = (p+ n− 1, n) where p = 4 and n = 3. Then, configurations 1,7,11 and
17 have C = 20 cases.

The counting process for the configurations formed by two equal coaxial
sets having 4 topological types and one coaxial set with 4 topological types
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is obtained by combining C = (p + n − 1, n) × 4 where p = 4 and n = 2.
Then, configurations 2,4,12 and 14 have C = 40 cases.

The counting process for the configurations formed by three coaxial sets
sets of the same type, which have 6 topological types is obtained by com-
bining C = (p + n − 1, n) where p = 6 and n = 3. Then, configurations 10
and 20 have C = 56 cases.

The counting process for the configurations formed by two equal coaxial
sets sets having 4 topological types and one coaxial set with 6 topological
types is obtained by combining C = (p + n − 1, n) × 6 where p = 4 and
n = 2. Then, configurations 3,8,13 and 18 have C = 60 cases.

The counting process for the configurations formed by two equal coaxial
sets having 6 topological types and one coaxial set with 4 topological types
is obtained by combining C = (p + n − 1, n) × 4 where p = 6 and n = 2.
Then, configurations 5,9,15 and 19 have C = 84 cases.

The counting process for the configurations formed by three different
coaxial sets is obtained multiplying the number of topological cases in each
one. Then, configurations 6 and 16 have C = 4× 4× 6 = 96 cases.

3.2.4. Undefined radical center. The configurations for which the radical
center is not defined have the circumferences with aligned centers or have at
least one concentricity. In table 3 are listed the configurations with aligned
centers. The number of cases of these configurations is the same as those
listed in Table 1. In table 4 are listed the configurations with concentricities.
The number of cases of the configurations with concentricity was obtained
by exhaustive enumeration.

Table 3. Configurations with aligned centers.

Configuration Not secant Tangent Secant Concentric Cases

11 3 0 0 0 20
12 2 1 0 0 40
13 2 0 1 0 60
14 1 2 0 0 40
15 1 0 2 0 84
16 1 1 1 0 96
17 0 3 0 0 20
18 0 2 1 0 60
19 0 1 2 0 84
20 0 0 3 0 56

4. IMPLEMENTATION OF METHOD

In this method, each set of three circumferences is identified by a vector
V composed of ten parameters according to the expression 4.

(4) V = [P(A,β), P(B,α), P(αβ), P(A,γ), P(C,α), P(αγ), P(B,γ), P(C,β), P(βγ), P(rc)]
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Table 4. Configurations with concentricities.

Configuration Not secant Tangent Secant Concentric Cases

21 0 0 0 3 1
22 0 0 2 1 12
23 0 2 0 1 2
24 2 0 0 1 6
25 0 1 1 1 14
26 1 0 1 1 6
27 1 1 0 1 8

The parameters P(A,β), P(B,α), P(A,γ), P(C,α), P(B,γ) and P(C,β) can take
positive, negative and null values. In vector V , to indicate these condi-
tions are assigned values 1,2 and 3 respectively. The parameters Lp(αβ),
Lp(αγ) and Lp(βγ) can take positive, negative, null and undefined values. In
vector V , to indicate these conditions are assigned values 1,2,3 and 4 respec-
tively. The parameter Pw(rc) can take positive, negative, null and undefined
values. Also, to indicate these conditions in vector V are assigned values
1,2,3 and 4 respectively.

4.1. Calculations of vector V parameters. The calculations of parame-
ter values P(A,β), P(B,α), P(A,γ), P(C,α), P(B,γ) and P(C,β) are made by substi-
tuting the values of the coordinates of the center of a circumference in the
equation of another. For example, checking the condition of A relative to β
it is determinated by substituting its coordinates in the equation 2.

The parameter values Lp(αβ), Lp(αγ) and Lp(βγ) substituting the Lp co-
ordinates in one equation of circumference set. For example, the power
of Lp(αβ) parameter is determinated by substituting its coordinates in the
equation 1 or 2. The coordinates of Lp are determined by the intersections
of the radical axis of the sets αβ, αγ and βγ with the the straights AB, AC
and BC respectively.

The parameter value Pw(rc) is determined by the intersections of any of
two radical axis of the sets. For example, αβ and αγ, αβ and βγ or αγ
and βγ. The equations of the radicals axes are obtained by subtracting
equations of two circumferences. For example from αβ (2−1), to αγ (3−1)
and to βγ (3−2) [4].

4.2. Algorithm flowchart. This algorithm is quite simple. First, are read
the coordinates of the centers and radii of three circumferences and begins
the calculations of the parameters vector V . Then, the parameters for the
first two read circumferences P(A,β) , P(B,α) and Lp(αβ) are calculated. The
calculation of the parameters P(A,β), P(B,α) does not depend on none prior
verification but Lp(αβ) is defined only if A and B are not coincidents. This
part of algorithm flowchart is shown in Figure 12.

In the second part are calculated parameters P(A,γ), P(C,α) and Lp(αγ).
These calculations does not depend on none prior verification but Lp(αγ) is
defined only if A and C are not coincidents. If Lp(αγ) and Lp(αβ) are not
defined the program is terminated because α, β and γ are concentric. Of
course, Pw(rc) is not defined.
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Figure 12. Algorithm flowchart:first part.

At least, the parameters P(B,γ), P(C,β) and P(βγ) are calculated. These
calculations does not depend on none prior verification but Lp(βγ) is defined
only if B and C are not coincidents. If none of two Lp(αβ), Lp(αγ) and Lp(βγ)
are defined and these are not parallel the parameter Pw(rc) is defined. This
third part of the flowchart algorithm is shown in Figure 13.

This algorithm was implemented in C language and it was conducted a
series of tests to characterize the processing time of sets formed by three cir-
cumferences. The obtained times reflects the complexity of the calculations
carried out for each one of the configurations according to the algorithm
flowcharts.

4.3. Applications of the proposed method. In this section is exempli-
fied the uses of vector V from the calculation the topology of the smallest
circumference tangent to the three given in some configurations.

A full analysis of the configuration 7 shows that the smallest tangent
circumference is external to the α,β and γ or is external of two of them and
internal to the other. In this configuration the radical center, Pw(rc), has a
positive power and lowest powers Lp(αβ), Lp(αγ) or Lp(βγ) has a null power.
Hence, the decision criterion depends on the values of P(A,β), P(B,α), P(A,γ),
P(C,α), P(B,γ) and P(C,β).

Then, if the sum of these variables values is ”6”, the smallest circumfer-
ence tangent is determined by the condition (+r1), (+r2) and (+r3) in the
equations system 1, 2 and 3. In another situation, at least one of the these
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Figure 13. Algorithm flowchart:second part.

variables, for example P(C,α), has the value ”2” indicating that this circum-
ference radius should decrease. Another way to check this is to consider
the secondary parameters Lp(αβ)γ, Lp(αγ)β and Lp(βγ)α as shown in section
3.2.2. If one of these, for example Lp(αβ)γ, has value ”2”, this indicates
that this circumference radius, γ, should decrease. Thus, the algorithm
description of this procedure can be as follows:

if (Sum P(i,j) = 6);
r1=positive, r2=positive, r3=positive,

else if (P(A,β) = 2 or P(A,γ) = 2);
r1=negative, r2=positive, r3=positive,

else if (P(B,α) = 2 or P(B,γ) = 2);
r1=positive, r2=negative, r3=positive,

else;

r1=positive, r2=positive, r3=negative.

A full analysis of configuration 8 shows that the smallest tangent cir-
cumference is external to the α,β and γ or is external of two of them and
internal to the other. In this configuration the radical center, Pw(rc), has a
positive power and two lowest powers Lp(αβ), Lp(αγ) or Lp(βγ) are null and
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one of them is negative. Again, the decision criterion depends on the val-
ues of P(A,β), P(B,α), P(A,γ), P(C,α), P(B,γ) and P(C,β). Thus, the algorithm
description of this procedure can be as follows:

if (Sum P(i,j) = 6);
r1=positive, r2=positive, r3=positive,

else if (P(B,α) = 2 or P(C,α) = 2);
r1=negative, r2=positive, r3=positive,

else if (P(A,β) = 2 or P(C,β) = 2);
r1=positive, r2=negative, r3=positive,

else;

r1=positive, r2=positive, r3=negative.

Another way to do this verification is using the secondary parameters
Lp(αβ)γ, Lp(αγ)β and Lp(βγ)α. Thus, the algorithm description of this pro-
cedure can be as follows:

if (Lp(αβ)γ = 2);
r1=positive, r2=positive, r3=negative,

else if (Lp(αγ)β = 2);
r1=positive, r2=negative, r3=positive,

else if (Lp(βγ)α = 2);
r1=negative, r2=positive, r3=positive,

else;

r1=positive, r2=positive, r3=positive.

A full analysis of the configuration 9 shows that the power of radical
center, Pw(rc), is positive or null. In both cases, two lowest powers Lp(αβ),
Lp(αγ) or Lp(βγ) are negative and the other is null. Again, the decision
criterion depends on the values of P(A,β), P(B,α), P(A,γ), P(C,α), P(B,γ) and
P(C,β).

The smallest tangent circumference is outside of two circumferences in a
tangent set if they belong to different branches or is internal to one of them
if they belong to the same branch. Now, suppose that the tangent set is αβ.
It is easy to see that the decision criterion depends only on the parameters
P(A,β), P(B,α) and Lp(αβ)γ. Thus, the smallest tangent circumference can
be find as follows:

if (Sum P(ij) =!2) and (r1 > r2) and (Lp(αβ)γ =!1);
r1=positive, r2=negative, r3=negative,

else if (Sum P(ij) =!2) and (r1 < r2) and (Lp(αβ)γ =!1);
r1=negative, r2=positive, r3=negative,

else if (Sum P(ij) =!2) and (r1 > r2)and (Lp(αβ)γ = 1);
r1=positive, r2=negative, r3=positive,

else if (Sum P(ij) =!2) and (r1 < r2)and (Lp(αβ)γ = 1);
r1=negative, r2=positive, r3=positive,

else if (Sum P(ij) =!2) and (Lp(αβ)γ =!1);
r1=positive, r2=positive, r3=negative,

else;

r1=positive, r2=positive, r3=positive.
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In the configuration 10 the power of radical center Pw(rc) is positive,
negative or null and the lowest powers points Lp(αβ), Lp(αγ) and Lp(βγ) have
a negative power to its circumferences.

In the first situation the power of radical center is positive and a full
analysis of this shows that are only one possibility for the smallest tangent
circumference. This case of this configuration has eight solutions but, the
smallest is always external to the three given.

In the second situation the power of radical center is negative and a full
analysis of this shows that are three possibilities for the smallest tangent
circumference. It can be internal to the three given; it can be internal of
the two of them and external to the one and it can be external of the two
of them and internal to the one. This cases of this configuration has eight
solutions and the smallest can be in seven different positions.

In the third situation the power of radical center is null and a full analysis
of this situation shows that are two possibilities for the smallest tangent
circumference. It can be internal to the two circumferences and external to
one of them or it can be external to the two circumferences and internal
to one of them. This cases of this configuration has four solutions and the
smallest can be in three different positions.

The algorithmic procedures for the latter two cases of the configuration 9
may be constructed in a analogous way to the examples given for the config-
urations 7 and 8. The configurations from 1 to 6 have at least one not-secant
set and a full analysis of them shows that is necessary more than topology
and geometry analysis to deduce the smallest tangent circumference topol-
ogy. The exceptions is the cases where a not-secant set has circumferences in
the same branch. In these situations, the smallest tangent circumference are
internal to one of them and internal or external to another’s circumferences
and in this condition is not difficult to determine.

5. FINAL REMARKS

A method shown here can correctly identify any set of three circumfer-
ences by the vector V . This vector is constructed by calculating the relative
positions of the centers of the circumferences, the powers of Lp points and
at last, the power of radical center if the radicals axis are defined or are not
parallels. As one can see, its theoretical basement is the power concept but
in the calculating of vector V are used only operations such as checks the
relative positions between points and circumferences, parallelism between
lines and calculations of intersections between them.

In the method, any set of three circumferences correspond to one of the
1331 identified cases and the only situation in which is needed additional
information to a vector V to distinguish cases occurs in a subgroup that has
the aligned centers. Is this subgroup, we need to know if the three tangent,
not secant or secant circumferences belongs to a same coaxial set or not. To
know this, is just necessary verify if the any two Lp points are coincident or
not.

The vector V generated in the method was used to identify the topology
of the smallest tangent circumference in some configurations. Therefore, it
cannot be applied in all of them and this indicates that more studies on
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the geometry and topology of this type set are necessary. In a general way,
the main advantage of the method is it conceptual simplicity. Therefore, its
brings new light to a classification of sets of three circumferences and induces
new questions about selection sets in largest cluster of circumferences.
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genharia. Tese de Doutorado, Escola Politécnica da Universidade de São Paulo, 2007.

[18] Muirhead, R.F., On the number and nature of the solutions of the apollonius contact
problem, Proceedings of the Edinburgh Mathematical Society (attached figures 44-
114),(14)(1896) 135–147.

CENTER FOR ENGINEERING AND APPLIED SOCIAL SCIENCES
FEDERAL UNIVERSITY OF ABC, BR
E-mail address: rovilson.mafalda@ufabc.edu.br


