THE LOCAL DENSITY AND THE LOCAL
WEAK DENSITY OF HYPERSPACES

R. B. BESHIMOV, F. G. MUKHAMADIEV and N. K.
MAMADALIEV

Abstract. In the paper the local density and the local weak density of
hyperspaces, are investigated.

1. Introduction

Let X be a T_1-space. The set of all nonempty closed subsets of a space X
denote by $\exp X$. The family of all sets in the form $O\langle U_1, ..., U_n \rangle = \{ F : F \in \exp X, F \subset \bigcup_{i=1}^{n} U_i, F \cap U_i \neq \emptyset, i = 1, 2, ..., n \}$, where $U_1, ..., U_n$ is a sequence of open sets in X, generates a topology on the set
$\exp X$. This topology is called the Vietoris topology. The set $\exp X$ with
the Vietoris topology is called the exponential space or the hyperspace of X
[1]. Denote by $\exp_n X$ the family of all nonempty finite subsets of a space
X, consisting of at most n elements, i.e. $\exp_n X = \{ F \in \exp X : |F| \leq n \}$. Denote by $\exp_c X$ the family of all finite subsets of X. Denote by $\exp_c X$
the family of all closed compact subsets of X.

Definition 1.1. The weak density of a topological space X is the smallest
cardinal number $\tau \geq \aleph_0$ such that there is a π-base in X
coinciding with τ centered systems of open sets, i.e. there is a π-base $B = \bigcup \{ B_\alpha : \alpha \in A \}$, where B_α is a centered
system of open sets for each $\alpha \in A$ and $|A| = \tau$.

The weak density of a topological space X is denoted by $wd(X)$. If
$wd(X) = \aleph_0$ then we say that a topological space X is weakly separable.

Definition 1.2. We say that a topological space X is locally separable at a
point $x \in X$ if x has a separable neighborhood.

A topological space is locally separable if it is locally separable at each
point $x \in X$.

Keywords and phrases: Local density, Local weak density, Hyperspace
(2010)Mathematics Subject Classification: 54A25, 54B20
Definition 1.3. We say that a topological space \(X \) is locally \(\tau \)-dense at a point \(x \in X \) if \(\tau \) is the smallest cardinal number such that \(x \) has a \(\tau \)-dense neighborhood in \(X \).

The local density at a point \(x \) is denoted by \(ld(x) \). The local density of a space \(X \) is defined as the supremum of all numbers \(ld(x) \) for \(x \in X \); this cardinal number is denoted by \(ld(X) \).

Definition 1.4. A topological space is locally weakly \(\tau \) dense at a point \(x \in X \) if \(\tau \) is the smallest cardinal number such that \(x \) has a neighborhood of weak density \(\tau \) in \(X \).

The local weak density at a point \(x \) is denoted by \(lwd(x) \).

The local weak density of a topological space \(X \) is defined with following way: \(lwd(X) = \sup \{lwd(x) : x \in X \} \).

Theorem 1.1. Let \(X \) be an infinite \(T_1 \)-space. \(O \{V_1, V_2, \ldots, V_k\} \subset \subset \) \(O \{U_1, U_2, \ldots, U_n\} \) iff \(\bigcup_{i=1}^{k} V_i \subset \bigcup_{j=1}^{n} U_j \) and for each \(j \in \{1, 2, \ldots, n\} \) there exists \(i \in \{1, 2, \ldots, k\} \) such that \(V_i \subset U_j \).

Theorem 1.2. For any infinite \(T_1 \)-space \(X \)
\[\text{wd}(X) = \text{wd}(exp_n X) = \text{wd}(exp_{\omega} X) = \text{wd}(exp_\omega X) = \text{wd}(exp X). \]

2. MAIN RESULTS

Question 2.1. Is it true that for the local density of a \(T_1 \)-space \(X \) following equalities hold:
\[ld(X) = ld(exp_n X) = ld(exp_{\omega} X) = ld(exp_\omega X) = ld(exp X). \]

Theorem 2.1. Let \(X \) be an infinite \(T_1 \)-space. Then
\[ld(X) = ld(exp_n X) = ld(exp_{\omega} X) = ld(exp_\omega X). \]

Proof. 1) Firstly, we shall show that \(ld(X) = ld(exp_n X) \).

a) we shall prove that \(ld(exp_n X) \leq ld(X) \). Suppose \(ld(X) = \tau \geq \aleph_0 \) and \(F \in \text{exp}_n X \) is an arbitrary element of the set \(\text{exp}_n X \). We must show \(ld(F) \leq \tau \). For convenience, assume that a set \(F = \{x_1, x_2, \ldots, x_n\} \) consists of exactly \(n \) distinct points. Then there exist neighborhoods \(O_{x_1}, O_{x_2}, \ldots, O_{x_n} \) of points \(x_1, x_2, \ldots, x_n \) respectively, such that \(d(O_i, x_i) \leq \tau \), \(i = 1, 2, \ldots, n \). Let \(M_1, M_2, \ldots, M_n \) be dense subsets of \(O_{x_1}, O_{x_2}, \ldots, O_{x_n} \) respectively, such that \(|M_i| \leq \tau \) for \(i = 1, 2, \ldots, n \).

Then clearly, the set \(M = \bigcup_{i=1}^{n} M_i \) is dense subset of the union \(\bigcup_{i=1}^{n} O_i x_i \) and \(|M| \leq \tau \). Consider the family \(\mu = \{F \in \text{exp}_n X : F \subset \bigcup_{i=1}^{n} M_i \} \). It is obvious that \(|\mu| \leq \tau \). We shall show that \(\mu \) is dense in \(O_{i=1}^{k} O_{x_1}, O_{x_2}, \ldots, O_{x_n} \).

Let \(O(V_1, V_2, \ldots, V_k) \) \((k \leq n)\) be an arbitrary nonempty open set of \(O_{i=1}^{k} O_{x_1}, O_{x_2}, \ldots, O_{x_n} \). Then it is clear that \(O(V_1, V_2, \ldots, V_k) \) is open in \(\text{exp}_n X \). By theorem 1.1 \([5]\) we have \(\bigcup_{i=1}^{k} V_i \subset \bigcup_{j=1}^{n} O_j x_j \). It implies that \(V_i \subset \bigcup_{j=1}^{n} O_j x_j \) for each \(i = 1, 2, \ldots, k \). Since the set \(M \) is dense in \(\bigcup_{i=1}^{n} O_i x_i \),
each V_i intersects M. Let us choose a point $y_i \in V_i \cap M$ for each $i = 1, 2, \ldots, k$. Then $K = \{y_1, y_2, \ldots, y_k\} \in \mu$ and $K \in O\{V_1, V_2, \ldots, V_k\}$. Thus the set μ is dense in $O\{O_1x_1, O_2x_2, \ldots, O_nx_n\}$. Inequality $\text{ld}(\exp_n X) \leq \text{ld}(X)$ is proved.

b) Now we shall show $\text{ld}(\exp_n X) \geq \text{ld}(X)$. Suppose that $\text{ld}(\exp_n X) = \tau \geq \aleph_0$. We must prove that $\text{ld}(X) \leq \tau$. Consider an arbitrary point $x \in X$. It is clear that $\{x\} \in \exp_n X$. Then there is a neighborhood $O\{U\{x\}\}$ in $\exp_n X$ such that $d(O\{U\{x\}\}) \leq \tau$. Assume that $S = \{F_\alpha : \alpha \in A\}$ is a dense set in $O\{U\{x\}\}$ such that $|S| \leq \tau$. Take a point $x_\alpha \in F_\alpha$ from each set F_α. Put $B = \{x_\alpha : x_\alpha \in F_\alpha, F_\alpha \in S\}$. Then it is clear that $|B| \leq \tau$. We shall show that B is dense in $U\{x\}$. Suppose $G \subset U\{x\}$ is any nonempty open subset of $U\{x\}$. Then $O\{G\}$ is an open subset of $O\{U\{x\}\}$. Since S is dense in $O\{U\{x\}\}$, there exists an element $F_\alpha \in S$ such that $F_\alpha \in O\{G\}$. It is easy to see that $F_\alpha \subset G$. According to the choice of the point we have $x_\alpha \in F_\alpha \subset G$. Thus the B is dense in $U\{x\}$. Since the point $x \in X$ is arbitrary, we have $\text{ld}(X) \leq \tau$. This proves the inequality $\text{ld}(\exp_n X) \geq \text{ld}(X)$. From the sections a) and b) we obtain $\text{ld}(X) = \text{ld}(\exp_n X)$.

2) The proof of the equality $\text{ld}(X) = \text{ld}(\exp_n X)$ is analogous to the proof of section 1). Now we shall show the equality $\text{ld}(X) = \text{ld}(\exp_n X)$.

a) We shall prove $\text{ld}(\exp_n X) \leq \text{ld}(X)$. Assume that $\text{ld}(X) = \tau \geq \aleph_0$. Take an arbitrary element $F \in \exp_n X$. Then $F \subset X$ is compact subset of X. Since $\text{ld}(X) \leq \tau$, for each element $x \in F$ there exists a neighborhood Ox such that $d(Ox) \leq \tau$. Suppose that a point x runs over the set F, then the system $\{O_x x_\alpha : x_\alpha \in F\}$ covers the set F. Since F is compact, there exist finitely many sets $O_1x_1, O_2x_2, \ldots, O_kx_k$ such that $\bigcup_{i=1}^{k} O_i x_i \supseteq F$ and $d(O_i x_i) \leq \tau$ for each $i = 1, 2, \ldots, k$. It is clear that $O\{O_1x_1, O_2x_2, \ldots, O_kx_k\}$ contains the compact set F. We shall show that $d(O\{O_1x_1, O_2x_2, \ldots, O_kx_k\}) \leq \tau$. Assume that $M_1 = \{x_\alpha^1 : \alpha_1 \in A_1\}$, $M_2 = \{x_\alpha^2 : \alpha_2 \in A_2\}$, $M_k = \{x_\alpha^k : \alpha_k \in A_k\}$ are dense subsets of sets $O_1x_1, O_2x_2, \ldots, O_kx_k$ respectively and $|M_i| \leq \tau$ for each $i = 1, 2, \ldots, k$. Put $M = \bigcup_{i=1}^{k} M_i$. It is clear that M is dense in $\bigcup_{i=1}^{k} O_i x_i$ and $|M| \leq \tau$. Consider the family $\mu = \{G \subset M : |G| < \aleph_0\}$. We clearly have $|\mu| \leq \tau$. Now we shall show that μ is dense in $O\{O_1x_1, O_2x_2, \ldots, O_kx_k\}$. Indeed, let us take an arbitrary nonempty open subset $O\{U_1, U_2, \ldots, U_n\} \subset O\{O_1x_1, O_2x_2, \ldots, O_kx_k\}$ in $O\{O_1x_1, O_2x_2, \ldots, O_kx_k\}$. By theorem 1.1[5] we have $\bigcup_{i=1}^{k} U_i \supset \bigcup_{i=1}^{k} O_i x_i$.

This implies that $U_j \subset \bigcup_{i=1}^{k} O_i x_i$ for each $j = 1, 2, \ldots, n$. Since M is dense in $\bigcup_{i=1}^{k} O_i x_i$, we see that $U_1 \cap M \neq \emptyset, U_2 \cap M \neq \emptyset, U_n \cap M \neq \emptyset$. Take a point x_i from each intersection $U_i \cap M$ for $i = 1, 2, \ldots, n$ and we construct the set $K = \{x_1, x_2, \ldots, x_n\}$. We have clearly $K = \{x_1, x_2, \ldots, x_n\} \in O\{U_1, U_2, \ldots, U_n\} \cap \mu$.

We have proven that μ is dense in $O(O_1x_1, O_2x_2, \ldots, O_kx_k)$. This implies that $d(O(O_1x_1, O_2x_2, \ldots, O_kx_k)) \leq \tau$. The inequality $ld(\exp_n X) \leq ld(X)$ is proved.

b) Now we shall prove that $ld(X) \leq ld(\exp_n X)$. Suppose $ld(\exp_n X) = \tau \geq N_0$. We must prove that $ld(X) \leq \tau$. Take an arbitrary point $x \in X$. Since $\{x\}$ is compact, it is clear that $\{x\} \in \exp_n X$. Then there is a neighborhood $O(U\{x\})$ of the point $\{x\}$ in $\exp X$ such that $d(O(U\{x\})) \leq \tau$. Assume that the set $S = \{F_\alpha : \alpha \in A\}$ is dense in $O(U\{x\})$, where $|S| \leq \tau$. Choose a point $x_\alpha \in F_\alpha$ from each set F_α. Put $B = \{x_\alpha : x_\alpha \in F_\alpha, F_\alpha \in S\}$. We clearly have $|B| \leq \tau$. We shall show that the set B is dense in $U\{x\}$. Let $G \subseteq U\{x\}$ be any nonempty open subset of $U\{x\}$. Then $O(G)$ is an open subset of $O(U\{x\})$. Since S is dense in $O(U\{x\})$, there exists an element $F_\alpha \in S$ such that $F_\alpha \in O(G)$. Then by the choice of the points x_α we have $x_\alpha \in F_\alpha \subseteq G$. Thus B is dense in $U\{x\}$. Since the point $x \in X$ is arbitrary, we have $ld(X) \leq \tau$. From sections a) and b) we obtain $ld(X) = ld(\exp_n X)$. Theorem 2.1 is proved.

Corollary 2.1. Let X be an infinite compact T_1-space. Then

$$ld(X) = ld(\exp_n X) = ld(\exp_{n-1} X) = ld(\exp X).$$

Corollary 2.2. Functors \exp_n, \exp_{n-1}, \exp_n preserve the local density of infinite T_1-spaces. Moreover, the functor \exp preserves the local density in the category of compact spaces.

Proposition 2.1. Let X be an infinite topological space and U_1, U_2, \ldots, U_n are its open subsets such that $wd(U_i) \leq \tau$, $i = 1, 2, \ldots, n$, where τ is some infinite cardinal number. Then $wd\left(\bigcup_{i=1}^{n} U_i\right) \leq \tau$.

Proof. Assume that the system $\gamma_i = \bigcup_{\alpha \in A} \gamma_i^{(i)}$, where $|A| \leq \tau$, is a π-base coinciding with τ centered systems $\gamma_i^{(i)}$ in U_i for $i = 1, 2, \ldots, n$. Then the system $\gamma = \bigcup_{i=1}^{n} \gamma_i$ is a π-base. Indeed, suppose that V is any nonempty open subset of the space $\bigcup_{i=1}^{n} U_i$. Then there exists $i \in \{1, 2, \ldots, n\}$ such that $V \cap U_i \neq \emptyset$ and this intersection is open in the subspace U_i. Since γ_i is a π-base in U_i, there exists an element G from $\gamma_i \subseteq \gamma$ such that $G \subseteq V \cap U_i$. Therefore γ is a π-base in $\bigcup_{i=1}^{n} U_i$. Moreover, the system γ can be represented as the union of τ centered systems of open sets. This implies that $wd\left(\bigcup_{i=1}^{n} U_i\right) \leq \tau$.

Proposition 2.1 is proved.

Now for an element $O = O(U_1, U_2, \ldots, U_n)$ of the base of $\exp_n X$ put $S(O) = \{U_1, U_2, \ldots, U_n\}$, where U_1, U_2, \ldots, U_n are open sets in X.

Proposition 2.2. Suppose that the system $\Delta = \{O_\beta = O_\beta^{(\beta)} \cup U_1^{\beta}, U_2^{\beta}, \ldots, U_n^{\beta} : \beta \in B\}$, where U_i^{β} are open sets in X for $\beta \in B$ and $i = 1, n$, is a centered system of open subsets of $\exp_n X$. Then the family $\mu = \{W_\beta = \bigcup S(O_\beta) : O_\beta \in \Delta, \beta \in B\}$ is a centered system of open sets in X.
Proof. Suppose that proposition 2.1 does not hold, i.e. there exists a finite sequence \(W_{\beta_1}, W_{\beta_2}, ..., W_{\beta_k} \) of elements from \(\mu \) with empty intersection. But, since the system \(\Delta \) is centered in \(\exp_\omega X \), we have
\[
\bigcap_{j=1}^{k} O\left(U_{j}^{\beta_1}, U_{j}^{\beta_2}, ..., U_{j}^{\beta_k}\right) \neq \emptyset.
\]
Then there exists \(F \in \exp_\omega X \) such that
\[
F \subset \bigcup_{i=1}^{n} U_{i}^{\beta_i}
\]
for each \(j = 1, 2, ..., k \). This implies that
\[
F \subset \bigcap_{j=1}^{k} \left(\bigcup_{i=1}^{n} U_{i}^{\beta_j}\right) = \bigcap_{j=1}^{k} W_{\beta_j}.
\]
This contradiction proves that the system \(\mu \) is centered. Proposition 2.2 is proved.

Question 2.2. Which of the following equalities hold for the local weak density:
\[
lwd(X) = lwd(\exp_\omega X) = lwd(\exp_\omega X) = lwd(\exp_\omega X) = lwd(\exp_\omega X)?
\]

Theorem 2.2. Let \(X \) be an infinite \(T_1 \)-space. Then
\[
lwd(X) = lwd(\exp_\omega X) = lwd(\exp_\omega X) = lwd(\exp_\omega X).
\]

Proof. Firstly, we shall show that \(lwd(X) = lwd(\exp_\omega X) \).

Suppose \(lwd(X) = \tau \geq \kappa_0 \). We shall show that \(lwd(\exp_\omega X) \leq \tau \).
Take an arbitrary element \(F \in \exp_\omega X \). Assume that \(F = \{x_1, x_2, ..., x_n\} \in \exp_\omega X \), where \(x_1, x_2, ..., x_n \in X \). Since \(lwd(X) = \tau \geq \kappa_0 \), there exist neighborhoods \(Ox_1, Ox_2, ..., Ox_n \) of points \(x_1, x_2, ..., x_n \) respectively, such that \(wd(Ox_i) \leq \tau \) for each \(i = 1, 2, ..., n \). Then by proposition 2.2 we have
\[
wd\left(\bigcup_{i=1}^{n} Ox_i \right) \leq \tau.
\]
We must prove \(wd(O\langle Ox_1, Ox_2, ..., Ox_n \rangle) \leq \tau \). Suppose that \(\mu = \bigcup_{\alpha \in A} \mu_{\alpha} \) is a \(\pi \)-base for \(\bigcup_{i=1}^{n} Ox_i \), coinciding with \(\tau \) centered systems \(\mu_{\alpha_{i}} \), i.e. \(|A| \leq \tau \) and for each \(\alpha \in A \) the system \(\mu_{\alpha} \) is centered. By \(\Sigma \) denote the family of all finite subsets of the index set \(A \). Then it is clear that \(|\Sigma| \leq \tau \). Let \(M \) be the system of all finite subfamilies of the family \(\mu \). Put \(O(M) = \{O\langle W_{\alpha}^{1}, W_{\alpha}^{2}, ..., W_{\alpha}^{m} \rangle \} : \{W_{\alpha}^{1}, W_{\alpha}^{2}, ..., W_{\alpha}^{m} \} \in M\} \).
We shall show that \(O(M) \) can be represented as the union of \(\tau \) centered systems and is a \(\pi \)-base for \(O\langle Ox_1, Ox_2, ..., Ox_n \rangle \). Take an arbitrary open subset \(O\langle U_1, U_2, ..., U_k \rangle \) of \(O\langle Ox_1, Ox_2, ..., Ox_n \rangle \). By theorem 2.1 we have
\[
U_j \subset \bigcup_{i=1}^{n} Ox_i \text{ for } j = 1, 2, ..., k. \text{ Since } \mu \text{ is a } \pi \text{-base in } \bigcup_{i=1}^{n} Ox_i \text{, there exists an element } G_j \text{ from } \mu \text{ such that } G_j \subset U_j \text{ for each } j = 1, 2, ..., k. \text{ Then it is clear that } O\langle G_1, G_2, ..., G_k \rangle \subset O\langle U_1, U_2, ..., U_k \rangle \text{ and } O\langle G_1, G_2, ..., G_k \rangle \subset O(M). \text{ Therefore } O(M) \text{ is a } \pi \text{-base in } O\langle Ox_1, Ox_2, ..., Ox_n \rangle. \text{ Now let us show that } O(M) \text{ can be represented as the union of } \tau \text{ centered systems of open sets in } O\langle Ox_1, Ox_2, ..., Ox_n \rangle. \text{ For each } \psi \in \Sigma \text{ put } O_\psi(M) = \{O\langle W_{\alpha_1}^{1}, W_{\alpha_2}^{2}, ..., W_{\alpha_m}^{m} \rangle \in O(M) : \{\alpha_1, \alpha_2, ..., \alpha_m\} = \psi\}. \text{ Then this system is centered for every } \psi \in \Sigma \text{ and, clearly } \bigcup_{\psi \in \Sigma} O_\psi(M) = O(M). \text{ Indeed, let us take an arbitrary finite sequence of elements from } O_\psi(M): O\langle W_{\alpha_1}^{1}, W_{\alpha_2}^{1}, ..., W_{\alpha_m}^{1} \rangle, O\langle W_{\alpha_1}^{2}, W_{\alpha_2}^{2}, ..., W_{\alpha_m}^{2} \rangle, \ldots \ldots ,
$O \left< W^{(r)}_{\alpha_1}, W^{(r)}_{\alpha_2}, \ldots, W^{(r)}_{\alpha_m} \right>$, where r is some natural number. Since every system μ_α is centered, we have $\bigcap_{j=1}^{r} W^{(j)}_{\alpha_i} \neq \emptyset$ for $i = 1, 2, \ldots, m$. Choose a point y_i from the intersection for each $i = 1, 2, \ldots, m$ and form the set $E = \{y_1, y_2, \ldots, y_m\}$. For each $j = 1, 2, \ldots, r$ we have $E \subset \bigcup_{i=1}^{m} W^{(j)}_{\alpha_i}$ and $E \cap W^{(j)}_{\alpha_i} \neq \emptyset$, $i = 1, 2, \ldots, m$. This implies that $E \in \bigcap_{j=1}^{r} O \left< W^{(j)}_{\alpha_1}, W^{(j)}_{\alpha_2}, \ldots, W^{(j)}_{\alpha_m} \right>$. We have shown that any finite sequence of elements of $O_\psi(M)$ has nonempty intersection. Therefore $O_\psi(M)$ is centered for each $\psi \in \Sigma$ and, consequently, we obtain $\text{wd}(O(Ox_1, Ox_2, \ldots, Ox_n)) \leq \tau$. The inequality $\text{wd}(\exp_n X) \leq \tau$ is proved.

b) Assume that $\text{wd}(\exp_n X) = \tau \geq \aleph_0$. We shall show that $\text{wd}(X) \leq \tau$. Take an arbitrary point $x \in X$. Then $\{x\} \in \exp_n X$. From $\text{wd}(\exp_n X) = \tau$ it follows that there exists a neighborhood $O(U\{x\})$ of the point $\{x\}$ such that $\text{wd}(O(U\{x\})) \leq \tau$, where $U\{x\}$ is an open set in X. Let us prove that $\text{wd}(U\{x\}) \leq \tau$. From $\text{wd}(O(U\{x\})) \leq \tau$ it follows that $O(U\{x\})$ has a π-base $O = \bigcup_{\alpha \in A} O_\alpha$, where the system $O_\alpha = \{O \left< U_1^\beta, U_2^\beta, \ldots, U_n^\beta \right> : \beta \in A_\alpha \}$ is centered for each $\alpha \in A$ and $|A| \leq \tau$. For each $\alpha \in A$ consider the system $\mu_\alpha = \{W_\beta = \bigcup_{i=1}^{n} U_i^\beta : \beta \in A_\alpha \}$ of open sets in $U\{x\}$. Then by proposition 2.2 the system μ_α is centered for each $\alpha \in A$. Now let us show that the system $\mu = \bigcup_{\alpha \in A} \mu_\alpha$ is a π-base in $U\{x\}$. Suppose that $G \subset U\{x\}$ is any nonempty open subset of $U\{x\}$. Then $O(G)$ is a nonempty open set in $\exp_n X$ and $O(G) \subset O(U\{x\})$. Since the system O is a π-base in $O(U\{x\})$, there exists $O \left< U_1^\beta, U_2^\beta, \ldots, U_n^\beta \right> \in O$ such that $O \left< U_1^\beta, U_2^\beta, \ldots, U_n^\beta \right> \subset O(G)$. This implies that $G \supset \bigcup_{i=1}^{n} U_i^\beta = W_\beta$. The set W_β is contained in μ. Therefore μ is a π-base in $U\{x\}$. We constructed a π-base coinciding with τ centered systems in $U\{x\}$. The inequality $\text{wd}(X) \leq \tau$ is proved. From a) and b) it follows that $\text{wd}(X) = \text{wd}(\exp_n X)$. Analogously we can prove equalities $\text{wd}(X) = \text{wd}(\exp_n X)$ and $\text{wd}(X) = \text{wd}(\exp_c X)$. Theorem 2.2 is proved.

Corollary 2.3. Let X be an infinite compact T_1-space. Then $\text{wd}(X) = \text{wd}(\exp_n X) = \text{wd}(\exp_c X) = \text{wd}(\exp X)$.

Corollary 2.4. Functors \exp_n, \exp_c, \exp_n preserve the locally weak density of any infinite T_1-space. Moreover, the functor \exp_n preserves the local weak density in the category of compact spaces.

Theorem 2.3. (Hewitt-Marczewski-Pondiczery) [3]. If $d(X_s) \leq \tau$ for every $s \in S$ and $|S| \leq 2^\gamma$, then $d\left(\prod_{s \in S} X_s \right) \leq \tau$.

Let τ be an infinite cardinal number. Consider a family of topological spaces $\{X_s : s \in S\}$, where $|S| \leq 2^\gamma$.
Proposition 2.3. If every space \(X_s \) is locally \(\tau \)-dense and there exists a finite subset \(S_0 \) of the index set \(S \) such that \(X_s \) is \(\tau \)-dense for all \(s \in S \setminus S_0 \), then the product \(\prod_{s \in S} X_s \) is locally \(\tau \)-dense.

Proof. Take an arbitrary point \(x = \{ x_s : s \in S \} \) from the product \(\prod_{s \in S} X_s \).
Since all the spaces \(X_s \) are locally \(\tau \)-dense, the point \(x_s \in X_s \) has a neighborhood \(U_s \) of density \(\leq \tau \) for every \(s \in S_0 \). The set \(\prod_{s \in S_0} U_s \times \prod_{s \in S \setminus S_0} X_s \) is a neighborhood of the point \(x \) in \(\prod_{s \in S} X_s \) and by theorem 2.3 we have
\[
d \left(\prod_{s \in S_0} U_s \times \prod_{s \in S \setminus S_0} X_s \right) \leq \tau.
\]
So, we have found a \(\tau \)-dense neighborhood of the point \(x \) in \(\prod_{s \in S} X_s \). The point \(x \) was chosen arbitrarily, therefore the product \(\prod_{s \in S} X_s \) is locally \(\tau \)-dense. Proposition 2.3 is proved.

Corollary 2.5. Consider the family of topological spaces \(\{ X_s : s \in S \} \), where \(|S| \leq 2^{\aleph_0} \). If all the spaces \(X_s \) are locally separable and there exists a finite subset \(S_0 \) of the index set \(S \) such that \(X_s \) is separable for \(s \in S \setminus S_0 \), then the product \(\prod_{s \in S} X_s \) is locally separable.

It seems, the inverse statement is also true

Theorem 2.4. Suppose that the product \(\prod_{s \in S} X_s \) is locally \(\tau \)-dense. Then there exists a finite subset \(S_0 \) of the index set \(S \) such that \(X_s \) is \(\tau \)-dense for every \(s \in S \setminus S_0 \).

Note that in the inverse statement the condition \(|S| \leq 2^\tau \) is omitted.

Proof. Take an arbitrary point \(x = \{ x_s : s \in S \} \) from the product \(\prod_{s \in S} X_s \).
Since the product \(\prod_{s \in S} X_s \) is locally \(\tau \)-dense, the point \(x \) has a \(\tau \)-dense neighborhood \(\prod_{s \in S_0} U_s \times \prod_{s \in S \setminus S_0} X_s \) (since the density is hereditary with respect to open subsets, we can assume that the neighborhood is from the canonical base of \(\prod_{s \in S} X_s \)), where \(S_0 \) is a finite subset of \(S \) and \(x_s \in U_s \). Since the density is preserved under open mappings and the projection is an open map, we see that \(X_s \) is \(\tau \)-dense for every \(s \in S \setminus S_0 \). Theorem 2.4 is proved.

Corollary 2.6. Suppose that the product \(\prod_{s \in S} X_s \) is locally separable. Then there exists a finite subset \(S_0 \) of \(S \) such that \(X_s \) is separable for every \(s \in S \setminus S_0 \).
The local density and the local weak density of hyperspaces

REFERENCES

DEPARTMENT OF MATHEMATICS
TASHKENT STATE PEDAGOGICAL UNIVERSITY
YUSUF KHOS HOJIB STR. 103, 100070 TASHKENT, UZBEKISTAN
E-mail address: rbeshimov@mail.ru

DEPARTMENT OF MATHEMATICS
TASHKENT STATE PEDAGOGICAL UNIVERSITY
YUSUF KHOS HOJIB STR. 103, 100070 TASHKENT, UZBEKISTAN
E-mail address: farhod8717@mail.ru

INSTITUTE OF MATHEMATICS
NATIONAL UNIVERSITY OF UZBEKISTAN
DURMON YULI STR. 29, 100125 TASHKENT, UZBEKISTAN
E-mail address: nodir_88@bk.ru