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GENERALISED WARPED PRODUCTS

KRZYSZTOF DRACHAL

Abstract. The concept of warped product is introduced in the category
of di¤erential spaces in the sense of Sikorski, i.e. the notion of warped
product known from studying classical smooth manifolds is introduced in
the wider category of di¤erential spaces. In particular it allows to construct
a consistent formalism to describe glued Friedman universes �also if singular
points are included. The proposed scheme relies also on some algebraic
properties. In order to keep the article self�consistent a brief introduction
to di¤erential spaces theory is also presented.

1. Introduction

Warped products on classical smooth manifold were introduced by Bishop
and O�Neill in 1969 [2]. They are a nice tool describing e.g. simple models
of neighbourhoods of stars and black holes and standard Friedman universe
models [10]. However it is assumed that the scaling function is strictly pos-
itive, which implies non�degeneracy of the metric. But if considering the
gluing �for example two closed FLRW universes �the metric degenerates
on the shift. In such a situation one may �stratify�the whole model into two
smooth submanifolds and the singular point. However the notion of di¤er-
ential space in the sense of Sikorski allows to consider more general warped
products, i.e. the singularity occurs not to be a serious problem against
building di¤erential geometry, because glued universes form so called �dif-
ferential space in the sense of Sikorski�. Fortunately di¤erential geometry
over such objects is known [15]. (For short expository in English see also,
for example, [4].)
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2. Differential spaces

Di¤erential spaces (sometimes called in the literature d�spaces) are one
of the ways of generalising the classical manifold concept. (For a review
of other, similar concepts see, for example, [1].) The starting point is to
properly choose the set and some family of real functions on this set. But
actually this family may be arbitrary. However, by choosing these function,
one determines the topology and the di¤erential structure on the considered
set. The details are given below. It is assumed that N = f1; 2; : : : g.

De�nition 2.1. Let M be a set and let C0 = ff1; : : : ; fng be a family of
some real functions on M , i.e. fi : M ! R for all i = 1; : : : ; n. The
weakest topology on M , for which all functions from C0 are continuous is
called a topology induced by C0 and is denoted by �C0.

De�nition 2.2. Let C be some family of real functions on M . Then the set

f! � (f1; : : : ; fk) j ! 2 C1(Rk); k 2 N; fi 2 C; i = 1; : : : ; kg
is called the superposition closure of C and is denoted by scC. It is the ex-
pansion of the initial family of functions, C, by composing them with smooth
(in the usual sense) Euclidean functions.

De�nition 2.3. A function g is called the local C�function, if for every
point p 2M there exist some function f 2 C, such that there exists an open
neighbourhood U 3 �C0 of p, for which f jU = gjU . (The function f usually
varies for di¤erent points p.)

De�nition 2.4. The localisation closure of C on the set M is the family of
all local C�functions. It is denoted by (C)M .

De�nition 2.5. The family of functions C is called the di¤erential structure
on a set M , if C = (scC)M .

Lemma 2.1 ([15]). For every family C0 of real functions on a set M , the
corresponding di¤erential structure may be constructed by: �rst superposi-
tion closing and next localisation closing, i.e. by taking (scC0)M .

De�nition 2.6. The di¤erential structure C = (scC0)M is called the dif-
ferential structure generated by C0. If C0 is �nite, then C is called �nitely
generated.

The theory of di¤erential spaces may be studied even if C0 is not �nite.
However in this paper (if not stated otherwise) the generating set C0 is
assumed to be �nite.

De�nition 2.7. Let M be a set and let C0 be a set of real functions on M .
The pair (M;C), where C = (scC0)M , is called the di¤erential space.

Di¤erential spaces form a wider category than smooth manifolds.

Example 2.1. Consider M = Rn for some n 2 N and C = C1(Rn). Then
(M;C) is a smooth Euclidean n�dimensional manifold. It is not hard to
check that C is generated by projections �1; : : : ; �n, where �i(x1; : : : ; xn) =
xi, i = 1; : : : ; n, (x1; : : : ; xn) 2 Rn.
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Example 2.2. Consider some classical smooth manifold M and all smooth
(in the classical sense) real functions on it C1(M). Then (M;C1(M)) is
a di¤erential space.

Example 2.3. The graph of function jxj : [�1; 1] ! R is not a smooth
manifold, but it is a di¤erential space, i.e. let M = f(x; jxj) � Rn j x 2 Rg.
Then (M;C1(R2)jM ) is a di¤erential space.

Of course the notion of a manifold may be expanded to include manifolds
with boundary, etc. But de�nitely crossed axises are not manifolds.

Example 2.4. Consider M = f(x; y) 2 R2 j xy = 0g. From classical point
of view (0; 0) is a singular point and M cannot be equipped with a classi-
cally smooth di¤erential structure. It is an example of a di¤erential space,
which is not a manifold. This di¤erential structure consists of restrictions
of smooth function from R2, i.e. if C = ff jM j f 2 C1(R2)g then (M;C)
is a di¤erential space.

Another example shows how two di¤erent points may be identi�ed (glued).

Example 2.5. LetM = R and p; q 2M , p 6= q. Let C = ff 2 C1(R) j f(p) =
f(q)g. (M;C) is a di¤erential space.

De�nition 2.8. Having �xed some di¤erential space (M;C), any function
from C is called smooth in the sense of Sikorski.

The above smoothness is of course di¤erent from classical smoothness.
But if it does not lead to any misunderstanding it is written shortly �smooth�
and the phrase �in the sense of Sikorski�is omitted.

De�nition 2.9. A linear mapping vp : C ! R satisfying the Leibniz rule,
i.e. vp(fg) = f(p)vp(g)+vp(f)g(p) for all f; g 2 C is called a tangent vector
to (M;C) at p 2M .

De�nition 2.10. All tangent vectors to (M;C) at p 2M constitute a linear
space denoted by TpM .

De�nition 2.11. By TM is denoted the disjoint sum
F
p2M TpM .

De�nition 2.12. A mapping X : M ! TM , X : p 7! Xp is called a
tangent vector �eld to (M;C). It is called smooth, if for all f 2 C and F
de�ned as F : p 7! Xp(f), Xp(f) belongs to C. The set of all vector �elds
tangent to (M;C) is denoted by X(M).

De�nition 2.13. A linear mapping ! : X(M)� � � � �X(M)! C is called
a form on (M;C).

De�nition 2.14. A skew�symmetric, linear mapping ! : X(M) � � � � �
X(M)! C is called a di¤erential form on (M;C).

De�nition 2.15. A symmetric, linear mapping g : X(M) � X(M) ! C,
is called a metric.
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3. Generalised warped products

At �rst the (Cartesian) product of di¤erential spaces should be intro-
duced. Let (B;CB) and (F;CF ) be di¤erential spaces. Let � : B�F ! B
and � : B � F ! F be projections. Consider

C = ff � � j f 2 CBg [ fg � � j g 2 CF g:

De�nition 3.1. CB X CF := (scC)B�F is called the Cartesian product of
di¤erential structures CB and CF .

De�nition 3.2. The Cartesian product of two di¤erential spaces (B;CB)
and (F;CF ) is de�ned as the di¤erential space (B � F;CB X CF ).

The topology on a Cartesian product is the Tichonov topology: �CB X CF =
�CB � �CF .

Lemma 3.1. � and � are smooth. �

Some notation will be used, i.e. f�(g) := g � f and f�p(v) := v � f�.

De�nition 3.3. Mapping F : B ! F is called smooth, if 8f2CF f �F 2 CB.

De�nition 3.4. F is called a di¤eomorphism, if it is bijective and both F
and F�1 are smooth.

Theorem 3.1. ((�)�(p;q); (�)�(p;q)) : T(p;q)(B � F ) ! TpB � TqF is an
isomorphism.

Proof. [12] For �xed p 2 B and q 2 F consider inclusions iq : B ! B�F
and ip : F ! B � F de�ned as ip(q) = (p; q) for q 2 F and iq(p) = (p; q)
for p 2 B.
ip and iq are smooth. Indeed:
(f � �) � iq = f � (� � iq) = f 2 CB; (g � �) � ip = g � (� � ip) = g 2 CF ;

(g � �) � iq = g � (� � iq) = g(q) = const 2 CF ; (f � �) � ip = f � (� � ip) =
f(p) = const 2 CB.
ip : (F;CF ) ! (p � F; (CB X CF )p�F ) and iq : (B;CB) ! (B �

q; (CB X CF )B�q) are di¤eomorphisms.
Consider T(p;q)(B�F ) 3 w 7! ((�)�(p;q)(w); (�)�(p;q)(w)) and TpB�TqF 3

(u; v) 7! (iq)�pu+(ip)�qv and (u; v) 7! (iq)�pu+(ip)�qv 7! ((�)�(p;q)((iq)�pu+
(ip)�qv); (�)�(p;q)((iq)�pu+ (ip)�qv)).
(�)�(p;q)((iq)�pu)+(�)�(p;q)((ip)�qv) = (��iq)�pu+(��ip)�qv = (idB)�pu+

0 = u. Similarly (�)�(p;q)((iq)�pu) + (�)�(p;q)((ip)�qv) = v.
w 7! ((�)�(p;q)(w); (�)�(p;q)(w)) 7! (iq)�p((�)�(p;q)w) + (ip)�q((�)�(p;q)w)
(iq)�p((�)�(p;q)w) + (ip)�q((�)�(p;q)w = (iq � �)�(p;q)w + (ip � �)�(p;q)w
((iq)�p((�)�(p;q)w)+ (ip)�q((�)�(p;q)w)(f ��) = w(f �� � iq ��)+w(f �� �

ip��) = w(f ��) Similarly it can be checked for f ��, g�� and g��. Finally
it may be concluded that (iq)�p((�)�(p;q)w)+ (ip)�q((�)�(p;q)w) = w, because
both sides act in the same way on arbitrary function from CB X CF . �

Corrolary 3.1. dimT(p;q)(B � F ) = dimTpB + dimTqF

Consider vector �eld X 2 X(B) and Y 2 X(F ). Then the notion of their
lifts can be introduced.
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De�nition 3.5. The lift of a vector �eld X is de�ned as eX(p;q) = (iq)�p(Xp).
The lift of a vector �eld Y is de�ned as eY(p;q) = (ip)�q(Yq).
It can be easily checked that:eX and eY are smooth.

De�nition 3.6. Let (B;CB) and (F;CF ) be di¤erential spaces. Let � :
B � F ! B and � : B � F ! F be projections. Moreover let gB be
a metric tensor on (B;CB) and gF be a metric tensor on (F;CF ). Then
(B � F;CB X CF ) equipped with metric tensor g = ��(gB) + (f � �)2��(gF )
(called warped metric), where f 2 CB, is called a generalised warped product.

The case when f 2 C1(B) and f > 0 was studied by O�Neill [2], [10].
Here it is allowed that f = 0 or f diverges to in�nity or even f =2 C1(B).
In such a situation connection, Riemann curvature and Ricci tensor diverge.
But these are not a real obstacles to develop a consistent geometrical for-
malism, because from the de�nitions it is easily seen that:

Proposition 3.1. Every generalised warped product is a di¤erential space.

As in the classical case for each q 2 F , �jB�q is an isometry onto B
and for each (p; q) 2 B � F , B � q and p � F are orthogonal at (p; q).
In classical case T(p;q)(p � F )? = T(p;q)(B � q). But here if f = 0 then
T(p;q)(p � F )? = T(p;q)(B � F ). It is a common fact in di¤erential spaces
theory, that the tangent space dimension changes in singular points. Here a
singularity of f is announced by the dimension change of T(p;q)(p� F )?.
Also a result, similar to the classical case, holds:
Let X;Y 2 X(B) and V;W 2 X(F ). Then:
(1) g( eX; eV ) = 0,
(2) [ eX; eV ] = 0,
(3) eV g( eX; eV ) = 0,
(4) eXg(eV ;fW ) = 2fgF (V;W )X(f).

Proof. The �rst equality follows easily from de�nition of g. The second �
from the fact that p� F and B � q are orthogonal. For third equality it is
crucial that g( eX; eV ) is constant on every p� F The fourth is also based on
easy computations directly from the de�nition of a vector �eld. �
Having de�ned a metric g on a di¤erential space, a connection may be

de�ned. It can be done for example through the Koszul formula, i.e.:

De�nition 3.7. A connection on (M;C) is a mapping r : X(M) �
X(M) ! X(M) satisfying the Koszul formula in every point of M , i.e.
(ruv)(w) = 1

2(ug(v; w) + vg(u;w) � wg(u; v) + g(w; [u; v]) + g(v; [w; u]) �
g(u; [v; w])), where u; v; w 2 TpM .

The notation (ruv)(w) should be understood as: (ruv) acts as a 1�form
such that

(1) (ruv)(w) = g(ruv; w)
is ful�lled.
Proofs of the existence of the geometric objects introduced by Def. 2.14,

Def. 2.15 and Def. 3.7 may be found e.g. in [7].
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Remark 3.1. For a classical semi�Riemannian manifold a connection de-
�ned by Koszul formula is unique, because non�degeneracy of the metric
imposes that the relation given by Eq. 1 is bijective [10]. But if g = 0 (the
metric degenerates) it may be no longer true.

Lemma 3.2. For the connection introduced in Def. 3.7 the following rela-
tions hold:

(1) (rfuv)(w) = f(ruv)(w),
(2) additivity and R�linearity on each slot,
(3) (ru(fv))(w) = u(f)g(v; w) + f(ruv)(w),
(4) ug(v; w) = (ruv)(w) + (ruw)(v),
(5) (ruv)(w)� (rvu)(w) = g(w; [u; v]).

Proof. By direct computation. �
Classically a connection satisfying the above properties is called the Levi�

Civita connection (and in a classical case it is a unique one).

Lemma 3.3. For the connection introduced in Def. 3.7 also the following
relations hold:

(1) (ruv)(fw) = f(ruv)(w),
(2) (ruv)(w) + (rvw)(u) = vg(u;w) + g(w; [u; v]).

It is interesting to see the relation between a connection
B
r on (B;CB)

induced by the metric gB, a connection
F
r on (F;CF ) induced by the metric

gF and a connection r induced by the warped metric g (see Def. 3.6). Due
to Th. 3.1 each vector v 2 T(p;q)B � F may be decomposed into the sum of
vectors from TpB and TqF , i.e. v = vB+vF , where vB 2 TpB and vF 2 TqF .
And this decomposition is unique.

Proposition 3.2. The following relation holds:

(ruv)(w) = (
B
ruBvB)(wB) + f2(

F
ruF vF )(wF ) +

2fgF (vF ; wF )uB(f) + 2fgF (uF ; wF )vB(f)� 2fgF (uF ; vF )wB(f) :

Proof. It is the consequence of Lem. 3.3, i.e.:

(ruv)(w) =
1

2
(ug(v; w) + vg(u;w)� wg(u; v) +

g(w; [u; v]) + g(v; [w; u])� g(u; [v; w]))

=
1

2
(u(gB(v; w) + f

2gF (v; w)) + v(gB(u;w) + f
2gF (u;w))�

w(gB(u; v) + f
2gF (u; v)) + gB(w; [u; v]) + f

2gF (w; [u; v]) +

gB(v; [w; u]) + f
2gF (v; [w; u])� gB(u; [v; w])� f2gF (u; [v; w]))
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(ruv)(w) =
1

2
(u(gB(v; w)) + u(f

2gF (v; w)) + v(gB(u;w)) + v(f
2gF (u;w))�

w(gB(u; v))� w(f2gF (u; v)) + gB(w; [u; v]) + f2gF (w; [u; v]) +
gB(v; [w; u]) + f

2gF (v; [w; u])� gB(u; [v; w])� f2gF (u; [v; w]))

=
1

2
(u(gB(v; w)) + 2fgF (v; w)u(f) + f

2ugF (v; w) + v(gB(u;w)) +

2fgF (u;w)v(f) + f
2vgF (u;w)� w(gB(u; v))� 2fgF (u; v)w(f)�

f2wgF (u; v) + gB(w; [u; v]) + f
2gF (w; [u; v]) + gB(v; [w; u]) +

f2gF (v; [w; u])� gB(u; [v; w])� f2gF (u; [v; w]))

=
1

2
(uB(gB(vB; wB)) + 2fgF (vF ; wF )uB(f) + f

2uF gF (vF ; wF ) +

vB(gB(uB; wB)) + 2fgF (uF ; wF )vB(f) + f
2vF gF (uF ; wF )�

wB(gB(uB; vB))� 2fgF (uF ; vF )wB(f)� f2wF gF (uF ; vF ) +
gB(wB; [uB; vB]) + f

2gF (wF ; [uF ; vF ]) + gB(vB; [wB; uB]) +

f2gF (vF ; [wF ; uF ])� gB(uB; [vB; wB])� f2gF (uF ; [vF ; wF ]))

= (
B
ruBvB)(wB) + f2(

F
ruF vF )(wF ) +

2fgF (vF ; wF )uB(f) + 2fgF (uF ; wF )vB(f)� 2fgF (uF ; vF )wB(f) :

�
From the above proposition it can be concluded that:

Corollary 3.2. Let uB; vB; wB 2 TpB and uF ; vF ; wF 2 TqF , then:

(ruBvB)(wB) = (
B
ruBvB)(wB);

(ruF vF )(wF ) = f2(
F
ruF vF )(wF );

(ruBvB)(wF ) = (ruBvF )(wB) = (ruF vB)(wB) = 0;
(ruBvF )(wF ) = 2fgF (vF ; wF )uB(f);

(ruF vB)(wF ) = 2fgF (uF ; wF )vB(f);

(ruF vF )(wB) = �2fgF (uF ; vF )wB(f):

It can also be seen that if f = 0 then (ruv)(w) = (
B
ruBvB)(wB). More-

over, if both gB and gF are non�degenerate, then respective connections are
unique. More about the degenerate metric and consequences to the unique-
ness of the connection may be found in [13]. What can happen when one
assumes only some of the axioms from Def. 2.7 and how it can a¤ect the
connection is discussed in [9].

4. Application

To show the direct application of generalised warped product it is better to
consider Friedman universes after conformal rescalling its time axises instead
of unchanged models. The original Friedman models (see e.g. [10]) are
classical warped products with B 2 f(0; 2�k);Rg and F 2 fR3; S2;RP 3g,
equipped with the Friedmann�Lemaître�Robertson�Walker metric, i.e. the
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one for which a line element is given by the formula �dt2+ f2(t)d�2, where
d�2 is the line element on F (and k stands for some constant).
Here it will be assumed that B = (0; 2�). This is just a conformal rescall-

ing of R by tconformal = arccot 2t, or of (0; 2�k) by tconformal = t
k . These

modi�cations do not lead to any important di¤erences. They change only
numerical values �not a general properties like smoothness, continuity, etc.
(which are important for the scope of this paper). For more advanced review
of conformal rescalling in the context of pseudo�Riemannian manifolds and
General Relativity see e.g. [5] and [8].
The below table presents the important characteristics of the original

Friedman universes (here k stands for some constant values) [10].

type F f(t)
closed S2 t = k('� sin'); f = k(1� cos'); ' 2 (0; 2�)
�at R3 kt

2
3 ; t 2 (0;+1)

open RP 3 t = k(sinh'� '); f = k(cosh'� 1); ' 2 (0;+1)
Table 1. Major characteristics of Friedman universes.

k = 1

f

t

k = 0

k = ­1

Figure 1 - Scale functions for Friedman universes.
If one would like for example to include the initial (t = 0) and the �nal

point (t = 2�) of closed universe into the warped product then the scale
function would vanish in these points, i.e. f(0) = 0 = f(2�). So it is
impossible in a classical case to treat e.g. two closed universes glued together
as a warped product.
Moreover, if �at or open universes are glued, then f ! +1 from the left

side of the shift and f ! 0 from the right side of the shift. The question
of continuity and smoothness (in the classical sense) of a function obtained
from gluing two such scale functions is a delicate matter (see e.g. [3]). But
surely two glued �at or open universes are not a classical warped product.
So in seeking a generalisation of warped product capable of managing with

the problem of gluing Friedman universes two major problems occur. The
�rst one is that the new warping function may not be classically smooth on
the shift or may be degenerated on the shift. This can be simply overcome
by considering wider di¤erential structure (in the sense of Def. 2.5). The
problem of smoothness of the new warping function is not a real obstacle in
di¤erential spaces category. Classically non�smooth (but still continuous)
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function may just be incorporated into the di¤erential structure without
changing the topology of the space. The second problem �that it may even
be discontinuous on the shift � is more subtle, because it may a¤ect the
topology.
The �rst from the above problems occurs when one wants to glue two

closed universes. The second �when one wants to glue two open or two �at
universes, or open or �at universe with closed universe, or open with �at
universes.
Further, it would be also helpful to notice that di¤erential spaces (�nitely

generated) may be seen as subsets of Rn.

De�nition 4.1. Let (M;C) be the di¤erential space generated by ff1; : : : ; fng.
Consider the mapping F = (f1; : : : ; fn) : (M;C) ! (F (M); C1(Rn)). F is
called generator embedding.

It is easy to check that:

Theorem 4.1. Generator embedding, F , de�ned as above, is a di¤eomor-
phism.

Now, the �rst mentioned problem with gluing of universes can be illus-
trated by the below example.

Example 4.1. Consider gluing of two closed, conformally rescalled Fried-
man universes, i.e. a di¤erential spaces

(M1; C1) =

([0; 2�]� S2; (scfff � proj[0;2�] j f 2 C1([0; 2�])g [
fg � projS2 j g 2 C1(S2)gg)[0;2�]�S2)

and

(M2; C2) =

([2�; 4�]� S2; (scfff � proj[2�;4�] j f 2 C1([2�; 4�])g [
fg � projS2 j g 2 C1(S2)gg)[2�;4�]�S2) :

Each of these universes is itself a classical warped product with scaling func-
tion f given by equations: f(') = 1� cos', t = '� sin', where ' 2 (0; 2�)
in case of the �rst universe and ' 2 (2�; 4�) for the sequent universe. (For
' 2 f0; 2�; 4�g scaling function is 0). After gluing the obtained object is no
longer a classical warped product. First of all � because a new (expanded
by including limit values) scaling function (de�ned on [0; 4�]) is equal to 0
for ' 2 f0; 2�; 4�g. Secondly � because a new scaling function in not (in
the classical sense) smooth in ' = 2�. Nevertheless such a function may be
included into the di¤erential structure and called smooth in the sense of Def.
2.8. Notice also that the topology induced on the generalised warped product
is the same as the initial topology.

The second mentioned problem with gluing of universes can be illustrated
by the below example.

Example 4.2. Consider the di¤erential space (M;C), such that M = R
and C = (scff1; f2g)M , where f1 = idR and f2 = tan(�2 (x � bxc)). This
space has a Hausdor¤ property, because f1 separates points.
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The generator image F (M) looks like on next �gure.

f

t
Figure 2 - Glued scale function for a sequence of glued conformally

rescalled Friedman open universes.
The line is ripped. Notice, that introducing the new function (a scalar

�eld) to the structure (i.e. f2) results in changing the geometry of the
space. This is somehow consistent with Einstein�s ideas.Notice also that the
topology is a¤ected. With respect to the initial (Euclidean) topology the
glued scale function in right�continuous and lower semi�continuous. As a
result, the weakest topology, in which it is continuous, is Scott topology [14].
In fact, the core problem of the gluing of e.g. open universes is illustrated

in Ex. 4.2. The full description would need to consider R� RP 3 instead of
M and more complicated di¤erential structure as in Ex. 4.1. In order to
keep the argumentation clear this is omitted. The reader may understand
the computational idea from Ex. 4.1, while the constructional idea is clearly
presented in simpli�ed Ex. 4.2.

5. Conclusion

In this paper the conceptual new de�nition of generalised warped product
was presented. Its basic properties and possible usefulness for cosmological
models were sketched. Also some further researches are planned over curva-
ture, Ricci tensor and geodesics on generalised warped products. Although
closed cosmological models have been thoroughly studied in d�spaces for-
malism (see e.g. [6]), open models have not been studied by such methods.
Gluing of them is interesting, for example in the context of the new cosmo-
logical idea �Conformal Cyclic Cosmology [11].
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[7] Gruszczak, J., Heller, M. and Multarzyński, P., A generalization of manifolds as

space-time models, J. Math. Phys., 29(1988), 2576�2580.
[8] Kühnel, W. and Rademacher, H.-B., Conformal transformations of pseudo-

Riemannian manifolds, in: (eds.) Alekseevsky, D.V. and Baum, H., Recent Devel-
opments in Pseudo-Riemannian Geometry, European Mathematical Society, Zürich,
2008.

[9] Moreno, G., On the canonical connection for smooth envelopes, Demonstratio Math.,
47(2014), 459�464.

[10] O�Neill, B., Semi-Riemannian Geometry, Academic Press, San Diego, 1983.
[11] Penrose, R., Cycles of Time, Bodley Head, London, 2010.
[12] Sasin, W., Lectures on Di¤erential Spaces and their Applications, Lectures on Warsaw

University of Technology, 2012.
[13] Sasin, W. and Eledrisi, Y., On a generalization of the Levi-Civita connections of a

degenerate metric, Acta Cosmologica, 21(1995), 247�250.
[14] Scott, D., Continuous lattices, in (ed.) Lawvere, F.W., Algebraic Geometry and Logic,

Springer, Berlin, 1972.
[15] Sikorski, R., Wst ¾ep do geometrii ró·zniczkowej, Państwowe Wydawnictwo Naukowe,
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