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MATRIX THEORY OVER THE SPLIT QUATERNIONS

MEHDI JAFARI and YUSUF YAYLI

Abstract: Split quaternions have been expressed in terms of 4 X 4 matri-
ces by means of Hamilton operators. These matrices can be used to describe
rotations in 4-dimensional space Eé. In this paper, by De Moivre’s formula,
we obtain any powers of these matrices. Also, the relation between the
powers of matrices of split quaternions is given.

1. INTRODUCTION

Split quaternions, H’, or coquaternions are elements of a 4-dimensional as-
sociative algebra introduced by James Cockle in 1849. Like the quaternions
introduced by Hamilton in 1843, they form a four dimensional real vector
space equipped with a multiplicative operation. Unlike the quaternion al-
gebra, the split quaternions contain zero divisors, nilpotent elements, and
nontrivial idempotents. Manifolds endowed with coquaternion structures
are studied in differential geometry and superstring theory. Rotations in
Minkowski 3-space can be stated with split quaternions, such as expressing
Euclidean rotations using quaternions [3, 11, 12].

Some algebraic properties of Hamilton operators are considered in [2]
where real quaternions have been expressed in terms of 4 x 4 matrices
by means of these operators. These matrices have applications in many
fields, such as mechanics, quantum physics and computer-aided geometric
design [1]. In addition to, Yayl has considered homothetic motions with
aid of the Hamilton operators in four-dimensional Euclidean space E* [17].
The eigenvalues, eigenvectors and the others algebraic properties of these
matrices are studied by several authors [4, 6, 8]. The Euler’s and De-Moivre’s
formulas for the complex numbers are generalized for quaternions [5]. These
formulas are also investigated for the case of dual quaternions in [7, 10].
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Recently, we have derived the De-Moivre’s and Euler’s formulas for ma-
trices associated with real quaternion and every power of these matrices are
immediately obtained [9]. Euler and De Moivre’s formulas for split quater-
nions are expressed in [13] and the roots of a split quaternion with respect to
the causal character of the split quaternion are given. Here, after a review
of some properties of split quaternions, De Moivre’s and Euler’s formulas
for the matrices associated with these quaternions are studied. In special
cases, De Moivre’s formula implies that there are uncountably many matri-
ces of unit split quaternions satisfying A™ = Iy for n > 3. Furthermore, the
n-th roots of these matrices are derived. We give some examples for more
clarification.

2. PRELIMINARIES

In this section, we give a brief summary of the split quaternions. For
detailed information about these concepts, we refer the reader to Ref. [3,
11, 12, 13].

Definition 2.1. The Minkowski space Ei” is the Euclidean space E> provided
with the Lorentzian inner product
(W, ) = —urvy + ugvs + ugvs

where W = (u1,us,u3), v = (vi,v9,v3) € E3. We say that a vector o

in B3 is spacelike, lightlike or timelike if (u,u); > 0, (W, uw) = 0 or

W, W) < 0 respectively. The norm of the vector w € E3 is defined by
1

1] = /[, .

The Lorentzian vector product @ A; v of @ and @ is defined as follows:

ik

— —

w NV =| uy Uy U3
V1 V2 U3

The hyperbolic and Lorentzian unit spheres are
H:={d ecF}:(d,a)=—-1}
and
S% = {E) € E% : <E>7E>>l = ]-}7
respectively.

Definition 2.2. The semi-Fuclidean j-space with 2-index is represented
with E%. The inner product of this semi-Euclidean space

— —
(W, >E§ = —UV] — UV + U3V3 + U4V4.

We say that u is timelike, spacelike or lightlike if (, 7>E§1 <0,

(, E)>E§ >0 and (u, 7>E§ =0 for the vector U in E3 respectively.

Definition 2.3. A split quaternion is defined as
q = ao + a1t + azj + ask,
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where ag, a1, a2 and ag are real numbers and 1,4, j, k£ of ¢ may be inter-
preted as the four basic vectors of cartesian set of coordinates; and they sat-
isfy the non-commutative multiplication rules

¢ = -1, F=k=+1
ij = k=—ji, jk=—i=—kj,
ki= j=—ik
and hence ijk = +1. A split quaternion may be defined as a pair (Sq, ‘_/>q) ,
where S; = a, € R is scalar part and 1-/>q = a11+agj + ask is the vector part
of q. Vector parts of the split quaternions are identified with the Minkowski

3-space. The split quaternion product of two quaternions ¢ and p is defined

as
—

- = — — —
qp =550+ (V. Vi + SV +SpVy+ VN Vy,

here”(,);” and ”/A;” are Lorentzian inner and vector product, respectively.

The quaternion product may be written as

Go —a1 as a3 bo
ar  a. az —a b1
a as Qo ay 2
as —as a1 Qo b3

Thus, the space H' correspondence with semi-Euclidean four-space E%. The
—
conjugate of a split quaternion, denoted K, is defined as K, = S, — V.

Theorem 2.1. The algebra H' is isomorphic to the algebra Rs.

Proof. The real (2x2)-matrices are linear combination of the basis matrices

Lol &

whose multiplication rules coincide with the multiplication rules of the
basis elements 1,14, 7, k in the algebra H'. Hence the subalgebra consisting of
these matrices and the algebra H' are isomorphism [13].

Theorem 2.2. The algebra H' is isomorphic to the subalgebra of the algebra
Cy consisting of the (2 x 2)-matrices

- A B
A= [ B A } ’
and to the subalgebra of the algebra C} cosisting of the (2 x 2)-matrices
: A B
A= [ B i ] :

Proof. The proof can be found in [13].
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Definition 2.4. We say that a split quaternion q is spacelike, lightlike (null)
or timelike if I, < 0, I; = 0 or I, > 0 respectively where;
I =—{a,q) , = a+ai a3 —a.
2

The set of spacelike quaternions is not a group since it is not closed under
multiplication. That is, the product of two spacelike quaternions is timelike.
Whereas, the set of timelike quaternions denoted by

H’% = {q = (aoaalaa27a3) . Qo,01,02,03 S Rv Iq >0 };

forms a group under the split quaternion product. Also, the set of unit
timelike quaternions identified with semi-Euclidean sphere

§3={WeE}: (W, W) =1)

is subgroup of H/.. The vector part of any spacelike quaternion is spacelike,
but vector part of any timelike quaternion can be spacelike, timelike and
null.

Definition 2.5. The norm of split quaternion q = a, + a1i + asj + agk is

- 24,2 42 2
Nq—\/‘ao—l—al az — as|.

If Ny, = 1 then ¢ is called unit split quaternion and g, = Niq is a unit

split quaternion for N, # 0. Also, spacelike and timelike quaternions have
multiplicative inverse and they hold the property gg~! = ¢~ '¢q = 1. Lighelike
quaternions have no inverses.

Definition 2.6. A matriz A is called a semi-orthogonal matriz if AcAle =
AleAe = I, det A = 1 where Iy is an identity matriz and

= [ s g ] [11].

3. DE MOIVRE’S FORMULA FOR SPLIT QAUTERNIONS

Now, let’s express any split quaternion ¢ = a, + a1? + asj + ask in polar
form similar to quaternions and complex numbers. Polar forms of the split
quaternions are as follows:

3.1. Spacelike quaternions

Every spacelike quaternion can be written in the form
q = Ny(sinh § + " cosh 0)

where

Yy 2 2
sinh@zﬂ,coshﬂz 0y + a5+ a3

Ny Ny
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and

a1t + asj + azk
T = 1 2] 3 6512

is a spacelike unit vector in E3.
The product of two spacelike quaternions is timelike. That is, for a unit
spacelike quaternion ¢ = sinh # + v cosh 6, ¢*> = cosh# + v sinh 4.

Theorem 3.1. (De Moivre formula) Let ¢ = sinh + @ cosh® be a unit
spacelike quaternion. Then,

¢" = sinhnf + v coshnb, n is odd

— . .
q" = coshnf + v sinhnb, n is even.

3.2. Timelike quaternion with spacelike vector part

Every timelike quaternion with spacelike vector part can be written in
the form
q = Ny(cosh @ + w sinh 0)

where
N/ e
Coshﬁzﬂ,sinhez gy +ap + a3
Ng Ny
and

a1t + asj + agk
T = 1 2] 3 6512

V—ai +a3 +a3
is a spacelike unit vector in E and w? = 1. A unit timelike quaternion
q with spacelike vector part (abbreviated UTS) represents a rotation of a
three-dimensional non-lightlike Lorentzian vector by a hyperbolic angle 26
about the axis of ¢ [13].

For example, the polar form of timelike quaternion ¢ = v/2+ (v/2,v/2, —1)
is ¢ = cosh § 4+ W sinh @ where 6 = In(1 +v/2) and W = (v/2,v2, —1).

Euler’s formula for a UTS quaternion holds. Since w? = 1, we have
. 02 93 04 3 95
wh - e Py . _ _

e = 14 WO+ W+ (O g )
= cosh6 + wsinh§.

The differential of e®? is

d — . — —
—eW? — ginh @ + W cosh = wWe™? = %075,

do

Theorem 3.2. (De Moivre formula) Let ¢ = ¢®? = cosh 6 + W sinh 6 be a
UTS quaternion. Then,

¢" = coshnf 4+ w sinh nd
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for n € Z.
Proof. The proof follows immediately from the induction (see [13]).

3.3. Timelike quaternion with timelike vector part
Every timelike quaternion with timelike vector part can be written in the

form
q = Ny(cos + u sin )

. v a2—a2—a2 — i i .
where cosf = 20 ginf = VU 92798 . 7 = @ifejtask o g2 g,
Ng> Ny a2—a2—q2 o
1 2 3
timelike unit vector in E? and w2 = —1. Also, a unit timelike quaternion
1 )

g with timelike vector part (abbreviated UTT) represents a rotation of a
three-dimensional non-lightlike Lorentzian vector by an angle 26 about the
axis of q.

For example, the polar form of timelike quaternion ¢ = 1 4 (2,1,1) is
q=3(cosh + usinh) = 3(L + (2’1’1)@).

V3 V2 V3
Euler’s formula for a UTT quaternion also holds. Since w2 = —1, we
have
- 62 0 o
we —=n 7 = v
e = 14+ ub 5 u3!+4!+...
6% o - 03 &
= cosf + 1 sin#.
The differential of ¢ “? is
d — — —
@6“9 = —sinf+ wWcosh = we ' =07 [11].

Theorem 3.3. (De Moivre formula) Let ¢ = ¢®% = cosf + U sinf be a
UTT quaternion. Then,

q" = cosnf + U sinnf

for n € Z.
Proof. The proof follows immediately from the induction (see [13]).

Corrolary 3.1. There are uncountably many unit timelike quaternion with
timelike vector part satisfying q" = 1 for every integer n > 3.

2

Proof. For every u € H2, the quaternion ¢ = cos 2% + W sin =T is of order

n. For n =1 or n = 2, the quaternion ¢ is independent of .

Note that the corollary 3.1. do not hold for the spacelike quaternions and
timelike quaternions with spacelike vector part(TS).
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Example: ¢ = g + (1,0,@) = cos T 4+ Wsin % is of order 8 and
qg= —? + (1,@,0) = cos?jT7r —i—ﬂ)sin%’r is of order 8, ¢ = @4— (%,0,0) =
cos%—i—ﬂ)sin

% is of order 12.

3.4. Timelike quaternion with lightlike vector part

Every unit timelike quaternion with null vector part can be written in the
form ¢ = 1 + € where ¢ is a null vector. If ¢ = 1 + ¢ is a unit timelike
quaternion with null vector part, then ¢ = 1 + ne and only root of the
equation w" = qis 1+ % [13].

4. DE MOIVRE’S FORMULA FOR MATRICES OF SPLIT QAUTERNIONS

In this section, we introduce the R-linear transformations representing
left multiplication in H’ and look for also the De-Moiver’s formula for
corresponding matrix representation. Let ¢ be a split quaternion, then
¢+ H — H' defined as follows:

o(z) =qw, xe€ H'.
The Hamilton’s operator ¢;, could be represented as the matrices;

ao —a1 a2 as
a a as —a
Awl _ 1 o 3 2
az as Ao —ai
as —az ai Go

If ¢ be a unit split quaternion, then ¢; is semi-orthogonal linear transforma-
tion. Properties of these matrices are found in [11].

Theorem 4.1. The ¢ map defined as
¢ (H,’ +, ) - (M(4,R)7 D, ®)

a, —ai az as
al Qo a3z —ag
as as a, —Qaq
a3z —ag ai Qo

o(ao + a19 + agj + azk) —

s an isomorphism of algebras.

Proof. See [15] for a similar proof.

We can express the matrix A, in polar form. Let g be a UTT quaternion.
Since
q = ao+tait+azj+ask
= cosf+ U sinf
= cosf + (uy,uz,us)siné

= cosf + (uj sin B, ug sin 6, uz sin )
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we have
apg —ai as as cos) —wuisinf wussin€  wusgsind
ap ay a3 —az | | ursinf cos 0 uzsinf —ugsind
as a3 ap —ai | | ugsin® wuzsind cos) —upsinf
a3 —as a1 Qg ugsinf —ugsinf wqpsind cosf

Theorem 4.2. (De-Moivre’s formula) Let ¢ = €0 = cosf + U sinb be a

UTT quaternion. For an integer n

cosf) —upsinf wugsinf  wugsind
u1 sin 6 cos uzsinf —ugsinf
A= . . . (3.1)
ussinf  wusgsinf cosf) —upsinf
uzsinf —wussinf  wupsind cos
the n-th power of the matrix reads
cosnf —uisinnd wugsinnh  ussinnb
qn— | W sin nf cos nf uzsinnf —usg sinnb
ug sinnf  ussinnd cosn  —uqsinnb
ugsinnf —ugsinnf wuqsinnf cosnd

Proof. The proof follows immediately from the induction.

Note that theorem 4.2.

holds for spacelike quaternions and timelike
quaternions with spacelike vector part (TS).

Corrolary 4.1. There are uncountably many matrices associated with UTT
quaternions satisfying A™ = 1 for every integer n > 3.

Example:

corresponding to this quaternion is

cosy  —wupsinfg
: s s
4 | wasing cos g
ugsinf  ugsin
ugsinf  —ugsin

ugsin 7 ugsin g

ugsin}  —ugsin g
cosy  —upsinf

uy sin G cos

Let g = @ + (1,0, @) be a UTT quaternion. The matrix

vz V2
2102
1 2 ¥
0 ¥ 2
201 2

every powers of this matix are found to be with the aid of Theorem 4.2. |

for example, 15- th power is

A15 —

—uq sin 13” Ug sin 1??”
cos 1‘%“ u3 sin %

u3 sin ;ﬂ coS 1%”
—ug sin BTy sin i’r

V2 _ V2 0

2 2
V2 V2 1

2 2 /3

2

5 0 -1 %5
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Example: Let g = % + (%, %, —%) = cosh@ + Wsinh# be a UTS
quaternion. The matrix corresponding to this quaternion is

coshf —wisinhf wosinhd wssinh6
A- | w sinh 0 cosh 0 wsg sinh @ —ws sinh 6
" | wesinh® wssinh® coshd  —wjpsinh®
wsysinhf —wysinh€ wq sinh 6 cosh 6
3v2 _1 1 _ V2
4 2 2 4
1 V2 V2 1
_ 2 4 4 2
1 _ V2 32 _1
2 1 4 2
V2 1 1 3v2
4 2 2 4

where = Inv/2 and W = (v/2,v/2,—1). Every powers of this matix are
found to be with the aid of De Moivre’s theorem, for example, 5- th power
is

—~

coshbf  —w;sinh50 wysinh50  wgsinh 50
45— w1 sinh 560 cosh 560 wg sinh 50 —ws sinh 50
wo sinh 560 w3 sinh 560 coshb5f  —wq sinh 50
wg sinh 50 —wsg sinh 50wy sinh 56 cosh 56

33 31 31 31
W o W
=| a4 W ¥ _a
T T T
8/2 8 8  8/2

5. EULER’S FORMULA FOR MATRICES OF SPLIT QUATERNIONS
Let A be a matrix. We choose

0 —UuUr U us
A— (75} 0 us —ug

u9 us 0 (51

us —uUz U1 0

then one immediately finds A2 = —I;. We have a netural generalization of
Euler’s formula for matrix A;

A0 (40)*  (A0)° | (AD)*

e = I+ A0+ 51 + i + 1
2 4 3 5
= I4(1—%+Z!—)...+A(9—%+%—...)
= cosf + Asin,
cos@ —upsinf wugsin®  wuzsind
w1 sin 6 cos 0 uzsinf —ug sin 6
- ugsinf  ugsind cos —upsinf

uzsinf —wugsinf wupsind cos
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For detalied information about Euler’s formula, see [16].

6. n —th ROOTS OF MATRICES OF SPLIT (QUATERNIONS

6.1. The matrix accossiated with the UTT quaternion ¢ is of the form
(3.1). In a more general case we assume for the matrix of (3.1)

cos(0 4 2kw)  —ugsin(0 4 2kw) —ugsin(0 + 2kw) —wugsin(f + 2km)
uysin(f + 2kmw)  cos(0 + 2km) —ugsin(0 + 2km)  ugsin(0 + 2k7)
ug sin( 4+ 2kw) —ugsin(0 4+ 2kw)  cos(0 + 2k7) —uq sin(0 + 2km)
ugsin(0 4+ 2kw) —wugsin(0 + 2kw) g sin(f + 2kn) cos(0 + 2km)

here k € Z. The equation ™ = A has n roots. Thus

A=

COS(9+2]{?7T) g Sin(9+2k7r) Y Sln(&—i—?lm) —us Sin(9+2k7r)
A% _ Uy Sln( 0+2k7r ) COS( 9+§kﬁ ) —us Sln( 0+2k7r ) Uy Sin( 0+2km )
k us sin( 0+2k7r ) —us sm( +2k7r ) COS( 9+2k7r ) —uy sm( 9+Zk7r ) )
us sm( 6‘+2k7r ) —uy sin( 0+2k7r ) uy sm( 9+§k7r ) COS( €+73k7r )
for k = 0, the first root is
cos( ”3 —uy sm(%) —ug sm(%) —ug sm(e%)
A% _ | w sm(g) cos( ) —ugsin(;)  Buz sm(;é)
0 ugsin(2) —ug sm(Q) cos(2) —uq sin(2)
4 4 o 67"
ugsin(;) —wugsin(;)  wpsin(y) cos(;)
for k = 1, the second root is
cos(P2m ) —uysin(P2)  —ugsin(H2T)  —ugsin(E2T)
A% | wisin(#£2T) cos(9+2”) us sin(atfﬂ) u sin(etf”)
L] g sin( (’”;12”) —ug sin( 9””) cos(2£2m) —uq sin(ﬂ%)
ug sin( = O12my  _qy sin( 9+27r) uy sin(27) cos( '9";12”)

Similarly, for K = n — 1, the n th root could be achieved.

6.2. The matrix accossiated with the UTS quaternion ¢ is of the form

coshf —wisinhf wgsinhd wssinh6
A | W sinh 0 cosh 0 wszsinh @ —wsysinh @
"~ | wesinh® wssinh® coshf —wipsinhd |’

| w3 sinhf® —wsgsinh@ wqsinh 6 cosh 6

n

the equation 2™ = A has only one root. Thus

[ cosh 0 —wy smh 0 w9 sinh < 0 ws sinh < 0
1 w1 smh 0 cosh 0 wgsinh & —wgsinh & 0
An = 0 9
wg sinh £ ws blnh cosh > —w;sinh &

. "g 9 0
| wzsinh > —wgsinh & w; smh - cosh =
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6.3. The matrix accossiated with the unit spacelike quaternion ¢ is of the
form

sinhf —wjcoshf wgcoshf w3coshf
_ | vicoshd sinh 0 vz cosh@ —wvycoshb
vgcoshf  wvscoshé sinhf  —wvicoshd |’

vzcoshf —wvycoshf wvqcoshb sinh 0

the equation " = A has only one root if n is an odd number. Thus

sinh % —wvy cosh - 0 V9 cosh = 0 v3 cosh %
1 v1 cosh 9 smh 0 V3 cosh 2 —ypg9cosh 0
An = 0 P
vgcosh = w3 cosh sinh > —wvjcosh &
vgcosh 7 —wvgcosh 0 U1 cosh 4 sinh - 9

7. RELATIONS BETWEEN THE ARBITRARY POWERS OF MATRICE

The relations between the powers of matrices accossiated with a split
quaternion can be realized by the following Theorem.

Theorem 7.1. q is the UTT quaternion with the polar form q = cosp +
using. If m = %’r € Z* — {1}, then n = p (mod m) is possible if and only
if q" = ¢

Proof. Let n = p (mod m). Then we have n = a.m + p, where a € Z.

¢" = cosny+ usinng

= cos(am +p)p + U sin(am + p)p
2T
= cos a— +p)p+u sm(a? +p)e

(
= cos(pcp + a2m) 4 U sin(pp + a27)
= cos(pyp) + U sin(py)
= qp.
Now suppose ¢" = cosng + U sinng and ¢P = cospp + U sinpy . Since

q" = ¢P, we have cosny = cospy and sinnyp = sin pp, which means nyp =
pe + 2ma, a € Z. Thus n:a%T +p,n=p (mod m).

Theorem 7.2. Let q be a timelike quaternion with timelike vector part with
the polar form q = \/Ny(cos p +using). If m = %’T €Zt —{1}, thenn=p

(mod m) is possible if and only if ¢" = (\/qu)"_pqp.

Theorem 7.3. q is the UTT quaternion with the polar form q = cosp +
usinp. Let m = 2% € Zt — {1} and the matriz A corresponds to q. Then

n =p (mod m) is possible if and only if A™ = AP.

Proof. Proof is same as above.
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Example: Let ¢ = @ + (1,0, ?) be a UTT quaternion. From the

Theorem 4.6, m = /4 = 8, we have

A = A =AT=4"=_
A2 = A=A = A=

A3 — All — A19 — A27 — — _]—4
A8 _ AlG — A24 — — 1'4
The square roots of the matrix A can be achieved too
cos (2k77+45 —y sin (2k7r+45) g sin (2k7r+45 w3 sin (2k7r+45
N 1| wpsin (2k7r+45) cos 2k7r£+45 ug sin (2k7r+45) —ugsin (2k7r+60
k ug sin (2k7r+45) us sin (2 7r2+45) Cos (2k7r2+45) —uq sin (2k7r+45
o (2km4+45\ oo (2km+45 . (2km+45 2km+45
U3SID( 5 ) ugsm( 5 ) ulsln( 5 ) cos( 3 )
The first root for k = 0 reads
cos % —uq sin g Ug sin % u3 sin g
1 in T ™ AT o ain
Az _ | wsing cos § uz sin g uzsin g
0 uzsin g ugsing cosg  —upsing
SN T ain in T s
uz sin g uzsin g wupsin g Cos g
and the second one for k£ = 1 becomes
cos ggr —uq sin 987r Ug sin 9; ug sin 9%
A% | upsin 9% Cos 8 uz sin £ g —u2 sin @ﬂ
1 U Sin %’r ug sin < 89 cos 9§r —u1 sin %"
u3 sin 9{ —ug sin X wq sin 9§r cos 9%

Also, A2 —|—A =0.

Example: Let ¢ = % + %(1,1,—?) = sinhf + @ coshf be a unit
spacelike quaternion. The matrix corresponding to this quaternion is

sinhf —wjcoshf wycoshf w3coshf
A | @ cosh 6 sinh 0 vz cosh@ —wvycoshb
" | vgcoshf w3coshf sinhf  —w;coshf

vzcoshf —wvgcoshf wvqcoshb sinh 0

V2 _3 3 _3V2
1 2 2 ]
3 V2 o _3v2 3
_ 2 1 ] 2
3 _3v/2 V2 _3
2 ] 1 2
_3v2 3 3 V2
] 2 2 1

where # = Inv/2 and 7 = (\/5, V2, —1). The cube roots of the matrix A

can be achieved

sinh 3 0 -1 cosh 9 pycosh? V3 cosh Z
A% | u cosh 0 smh 0 V3 cosh % —vgcosh Z o
vgcosh s w3 cosh z smh 0° -1 cosh z

vgcoshg —wvg cosh z U1 cosh 4 sinh 3 4



MATRIX THEORY OVER THE SPLIT QUATERNIONS 69

012 —vV2 V2 -1
| v2 012 -1 V2
Tl V2 -1 012 —V2

-1 =2 V2 012

here sinh § = 0.1153 and cosh § = 1.0066.

—

(10]
(11]
(12]
(13]

(14]
(15]

(16]

(17]
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