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RADII OF THE INSCRIBED

AND ESCRIBED SPHERES OF A SIMPLEX

ALEXIS AKIRA TODA

Abstract. It is well-known that the reciprocal of the radius of the in-
scribed circle of a triangle is equal to the sum of the reciprocals of the radii
of the three escribed circles. I generalize this theorem for an n-dimensional
simplex. In three or higher dimensions, there are many types of spheres
tangent to a simplex. I characterize the existence and uniqueness of such
spheres and derive formulas connected with their radii.

1. Introduction

Consider a triangle and its inscribed and escribed circles (Figure 1). Let
r0 be the radius of the inscribed circle (incircle) and r1; r2; r3 be the radii of
the three escribed circles (excircles). It is well-known that

(1)
1

r1
+
1

r2
+
1

r3
=
1

r0
:

According to [6], the formula (1) is due to Steiner, published in 1828. Con-
sidering the simplicity of the formula and its proof, it would not be surprising
if the ancient Greek geometers knew about it. (1) also appears on p. 189 of
[3] and as Exercise 6 of Section 1.4 of [1].
In this paper I generalize (1) to the case of an n-simplex in a Euclidean

space Rn. For an n-simplex, we can show that there exist an inscribed sphere
and one escribed sphere opposite to the inscribed sphere about each face.
Since there are n + 1 faces, there are also n + 1 escribed spheres. Letting
r0 be the radius of the inscribed sphere and r1; : : : ; rn+1 be the radii of the
escribed spheres, we can show the relation

(2)
n+1X
k=1

1

rk
=
n� 1
r0

:

� � � � � � � � � � � � �
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Clearly (1) is a special case of (2) by setting n = 2. Contrary to the
two dimensional case, in Euclidean spaces with dimension three or higher,
there are many types of spheres that are tangent to the faces of the n-
simplex. For example, one can consider tangent spheres that are opposite to
the inscribed sphere about two faces, three faces, and so on. However, such
spheres may not always exist. In this paper I also characterize the existence
and uniqueness of such spheres, derive their radii, and further generalize the
formula (2).

Figure 1. Incircle and excircles of a triangle. I0 is the in-
center of triangle A1A2A3 and I1; I2; I3 are excenters.

The rest of the paper is organized as follows. Section 2 provides a simple
proof of (1) and an intuitive geometric proof of (2) that generalizes the two
dimensional case. Section 3 introduces some notations and presents a few
results in linear algebra suited for analyzing the geometry of the n-simplex.
Section 4 provides an algebraic proof of (2) and further generalizes it.

2. Geometric proof of (2)

First I prove (1). In Figure 1, let A1A2 = c, A2A3 = a, A3A1 = b, and
the radii of circles with centers I1; I2; I3 be r1; r2; r3, respectively. Consider
the quadrilateral A1A2I1A3. Since

�A1A2I1A3 = 4I0A1A2 [4I0A2A3 [4I0A3A1 [4I1A2A3
= 4I1A1A2 [4I1A3A1;
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Accounting for the area in two ways we obtain

1

2
r0(c+ a+ b) +

1

2
r1a =

1

2
r1(c+ b) ()

1

r1
=
b+ c� a
a+ b+ c

1

r0
:

Similarly,

1

r2
=
c+ a� b
a+ b+ c

1

r0
;

1

r3
=
a+ b� c
a+ b+ c

1

r0
:

Adding these three equations, we obtain (1).
The geometric proof of (2) is similar. Let P = fA1;A2; : : : ;An+1g be a

collection of n + 1 points in Rn that do not lie on a common hyperplane
and K = coP be the n-simplex with vertices fAkg. (�co� denotes the
convex hull.) Let Fk = co(PnAk) be the face of K that does not include Ak.
Let I0 be the incenter of K and Ik be the excenter that lies opposite to I0
about Fk. (The existence and uniqueness of such points are proved in the
next section.) Let r0; : : : ; rn+1 be the radii of the tangent spheres, with the
obvious indexation. Let jFkj be the area (n� 1-dimensional volume) of Fk.
We account for the volume of the polytope co(P [ Ik) in two ways. Since

co(P [ Ik) =

0@n+1[
j=1

co(I0 [ Fj)

1A [ (Ik [ Fk) = [
j 6=k

co(Ik [ Fj);

it follows that
n+1X
j=1

1

n
r0 jFj j+

1

n
rk jFkj =

X
j 6=k

1

n
rk jFj j ()

1

rk
=
F � 2 jFkj

F

1

r0
;

where F =
Pn+1
k=1 jFkj. Summing over all k�s, we obtain

n+1X
k=1

1

rk
=
(n+ 1)F � 2F

F

1

r0
=
n� 1
r0

;

which is (2).

3. Preliminary results

In this section I introduce some notations and a few preliminary results
in order to prove (2) rigorously.
All vectors belong to Rn, where n � 2. For x; y 2 Rn, hx; yi denotes the

usual inner product and the kxk =
p
hx; xi is the Euclidean norm. The dis-

tance between a point x and a set S is de�ned by dist(x; y) = infy2S kx� yk.
We say that the n + 1 points a1; a2; : : : ; an+1 are in generic position if the
matrix

(3) A = [a1 � an+1; : : : ; an � an+1]
is regular (nonsingular). It is easy to show that the notion of the generic
position does not depend on the order of a1; : : : ; an+1. The following lemma
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shows that if a1; : : : ; an+1 are in generic position, any vector in Rn can be
uniquely represented as an a¢ ne combination of these points.

Lemma 3.1. If the n + 1 points a1; : : : ; an+1 are in generic position, then
any x 2 Rn has a unique representation x =

Pn+1
i=1 tiai, where

Pn+1
i=1 ti = 1.

Proof. Since by assumption A is regular, the vectors fai � an+1gni=1 are
linearly independent. Hence for all x 2 Rn, there exists a unique represen-
tation

x� an+1 =
nX
i=1

ti(ai � an+1) () x =
nX
i=1

tiai +

 
1�

nX
i=1

ti

!
an+1:

The claim follows by setting tn+1 := 1�
Pn
i=1 ti.

An n-simplex K is the convex hull of n+ 1 points a1; : : : ; an+1 in generic
position. For instance, a 2-simplex is a triangle in R2, and a 3-simplex is a
tetrahedron in R3. With a slight abuse of language, I de�ne the face of an
n-simplex K by the hyperplanes that pass through all but one vertex of K.
Let �k be the face of K that does not contain ak.
In order to de�ne spheres that are tangent to all faces of K, we need to

compute the distance between a point and a face of K. Let the matrix A be
as in (3) and de�ne vectors b1; : : : ; bn+1 by (A�1)0 = B = [b1; : : : ; bn] and

(4) bn+1 = �
nX
i=1

bi:

The following proposition gives a formula for the distance between any point
and �k.

Proposition 3.1. Let
Pn+1
i=1 ti = 1 and x =

Pn+1
i=1 tiai. Then the distance

between x and the k-th face of K, �k, is given by

(5) dist(x; �k) =
jtkj
kbkk

:

Proof. Since B = [b1; : : : ; bn] is a regular matrix, we have bk 6= 0. Since
fbigni=1 are linearly independent, we have bn+1 = �

Pn
i=1 bi 6= 0. Therefore

the right-hand side of (5) is well-de�ned.
Let us show that for all i; j; k = 1; 2; : : : ; n+ 1, we have

(6) hai � aj ; bki = �ik � �jk;

where � is Kronecker�s delta. (6) is trivial if i = j. If (6) holds for j = n+1,
then (6) is true for any j because

hai � aj ; bki = hai � an+1; bki � haj � an+1; bki
= (�ik � �n+1;k)� (�jk � �n+1;k) = �ik � �jk:

Therefore, without loss of generality we may assume i � n and j = n + 1.
If k � n, then computing the (i; k) element of A0B = In we obtain

hai � an+1; bki = �ik = �ik � �n+1;k;
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so (6) holds. If k = n+ 1, then by (4) we get

hai � an+1; bn+1i = �
nX
j=1

hai � an+1; bji

= �
nX
j=1

(�ij � �n+1;j) = �1 = �i;n+1 � �n+1;n+1;

so (6) holds.
Next, I show that the vector bk is orthogonal to �k. To see this, �x any j 6=

k. Since �k passes through aj and is spanned by all vectors fai � ajgi6=j;k, it
su¢ ces to show that hai � aj ; bki = 0 for i 6= j; k. However, this is obvious
by (6) since i 6= k and j 6= k.
Finally, I show the distance formula (5). Again �x any j 6= k. Since bk is

orthogonal to �k, it follows from (6) and j 6= k that

dist(x; �k) =
jhx� aj ; bkij

kbkk
=

1

kbkk

�����
n+1X
i=1

ti hai � aj ; bki
�����

=
1

kbkk

�����
n+1X
i=1

ti(�ik � �jk)
����� = jtkj

kbkk
:

4. Algebraic proof of (2) and generalizations

In this section I characterize the existence of tangent spheres and rigor-
ously prove a generalization of (2).
Let a1; : : : ; an+1 be points in generic position and K = co fa1; : : : ; an+1g

be an n-simplex. Each face �k of K divides Rn into two half spaces, one
that contains ak and the other not. In order to refer to the position of a
point x =

Pn+1
i=1 tiai (with

P
i ti = 1) relative to �k, let � = (�1; : : : ; �n+1)

be a tuple of �1, which I call a sign. Since � consists of n + 1 elements
which can take the value �1, there are in total 2n+1 possibilities. The sign
with all 1 is denoted by 1 = (1; : : : ; 1). For any sign �, de�ne the set

(7) D(�) =

(
x =

n+1X
i=1

tiai

�����(8i)�iti � 0;
n+1X
i=1

ti = 1

)
:

Clearly the n-simplex K is precisely D(1).
The geometrical intuition of D(�) is that for all k, a point x 2 D(�) lies

on the same side as ak with respect to �k if �k = 1, and lies on the other
side of ak if �k = �1. The following lemma proves this fact and also shows
that all but one D(�)�s are nonempty.

Lemma 4.1. Any x 2 Rn belongs to at least one D(�). For any sign �,
ak 2 D(�) if and only if �k = 1. Furthermore, D(�1) = ;.
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Proof. That x 2 D(�) for some � follows by Lemma 3.1.
If x 2 D(�1), by de�nition there exist t1; : : : ; tn+1 such that ti � 0 for all

i and
Pn+1
i=1 ti = 1, which is obviously impossible. Therefore, D(�1) = ;.

Again by Lemma 3.1, setting tk = 1 and ti = 0 for i 6= k is the only way
to express ak =

P
i tiai with

P
i ti = 1. Therefore ak 2 D(�) if and only if

�k = 1.
If � 6= �0, there is some k such that �k 6= �0k. Hence by Lemma 4.1 one

of D(�), D(�0) contains ak and the other not. Therefore D(�) 6= D(�0),
and clearly they do not share interior points. Therefore Rn is divided into
a total number of 2n+1 � 1 nonempty D(�)�s. (��1�because D(�1) = ;.)
A sphere with center x and radius r is said to be tangent to K if r =

dist(x; �k) for all k = 1; 2; : : : ; n+1. The following proposition characterizes
the existence and uniqueness of tangent spheres.

Proposition 4.1. Let � be a sign. A tangent sphere with center in D(�)
exists if and only if

Pn+1
i=1 �i kbik > 0. Under this condition, the tangent

sphere is unique and its radius is given by r(�) = 1=
Pn+1
i=1 �i kbik.

Proof. Suppose that a sphere with center x =
Pn+1
i=1 tiai 2 D(�) and radius

r is tangent toK. Since by de�nition r = dist(x; �k) for all k, by Proposition
3.1 we obtain

(8) r =
jt1j
kb1k

= � � � = jtn+1j
kbn+1k

:

Since D(�) is de�ned by (7), it follows that �iti � 0. Since �i = �1, we
get jtij = j�itij = �iti. Hence by (8), ti is uniquely determined such that
ti =

rkbik
�i

= r�i kbik. Summing over i and noting that
Pn+1
i=1 ti = 1, we getPn+1

i=1 �i kbik = 1
r > 0, and r is unique.

Conversely, if
Pn+1
i=1 �i kbik > 0, de�ne r > 0 by 1

r =
Pn+1
i=1 �i kbik > 0

and ti = r�i kbik. Then these r and ti�s satisfy �iti � 0,
P
ti = 1 and (8),

so by de�nition there exists a sphere tangent to K with center in D(�).
Proposition 4.1 is essentially due to [7], although in their paper kbik is

replaced by the (n � 1)-dimensional volume of the face but they do not
compute the volume from the given vectors fa1; : : : ; an+1g.
By Proposition 4.1, if there is a tangent sphere with center in D(�), it is

unique. Hence, it is legitimate to denote it by S(�). Let r(�) be the radius
of S(�) if it exists. The following corollary is immediate from Proposition
4.1.

Corollary 4.1. For each sign �, exactly one of the followings hold: (i) S(�)
exists, (ii) S(��) exists, (iii) neither S(�) nor S(��) exist.

Proof. If
P
�i kbik 6= 0, then either

P
�i kbik or

P
(��i) kbik is positive

(but not both), so by Proposition 4.1 either S(�) or S(��) exists (but not
both). If

P
�i kbik = 0, then

P
(��i) kbik = 0 also, so by Proposition 4.1

neither S(�) nor S(��) exist.
I de�ne the escribed sphere by a tangent sphere corresponding to signs �

of the form �k = �1 for some k, and �i = 1 for all i 6= k. (There are n+ 1
such signs.) The following theorem rigorously proves the formula (2).
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Theorem 4.1. For any n-simplex K, exactly one inscribed sphere and n+1
escribed spheres exist. Letting r0; r1; : : : ; rn+1 be the radii of these spheres,
(2) holds.

Proof. Since
P
i kbik > 0, the inscribed sphere S(1) exists. Let �k be the

sign with k-th element �1 and all other elements 1, so �kk = �1 and �ki = 1
for all i 6= k. Let us show that the k-th escribed sphere S(�k) exists.
Since by (4) we have

P
i bi = 0, we get

P
i6=k bi = �bk. Taking the norm of

both sides and invoking the triangle inequality, we obtain
P
i6=k kbik � kbkk.

Equality does not hold because any n vectors of b1; : : : ; bn+1 are linearly
independent since B = [b1; : : : ; bn] is regular. Therefore

(9)
X
i6=k

kbik > kbkk () 0 <

n+1X
i=1

�ki kbik =
1

r(�k)
=
1

rk
;

so by Proposition 4.1 S(�k) uniquely exists. Summing 1
rk
over k and using

(9), since 1
r0
=
P
i kbik and �kk = �1, �ki = 1 (i 6= k), we obtain (2).

In two dimension, the only tangent circles to a triangle are the inscribed
circle and the three escribed circles. In three dimension, in addition to the
inscribed sphere and the four escribed spheres, in general there are other
tangent spheres. Figure 2 shows the edges of the tetrahedron K correspond-
ing to a1 = (0; 0;�1)0, a2 = (1; 0;�1)0, a3 = (0; 1;�1)0, a4 = (0; 0; 0)0 and
tangent spheres associated with signs � = (1; 1; 1; 1) (inscribed sphere) and
� = (1; 1;�1;�1). The larger sphere is touching the faces of K below the
�roof-like�region D(�).

Figure 2. Two spheres tangent to the tetrahedron K.
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In three or higher dimension, we can further generalize the formula (2).
To this end, for each sign � de�ne the quantity

(10) �(�) =

8><>:
1
r(�) ; (S(�) exists)

� 1
r(��) ; (S(��) exists)

0: (Neither S(�) nor S(��) exist)
Thus �(�) is either zero or the reciprocal of the radius of a tangent sphere,
with either a positive or negative sign. This de�nition is unambiguous in
view of Corollary 4.1. Furthermore, let j�j be the number of elements of �
equal to (�1), so j�j = # fij�i = �1g. For example, j1j = 0. De�ne the
product �� of two signs �; � by the element-wise multiplication. Note that
�� is again a sign because �i = �1 and � i = �1.
With these de�nitions, we can prove the main result of this paper.

Theorem 4.2. Let � be a sign and 1 � m � n. Then

(11)
X
j� j=m

�(��) =

��
n

m

�
�
�

n

m� 1

��
�(�);

where
�
n
m

�
= n!

m!(n�m)! is the binomial coe¢ cient.

Proof. Let us �rst show that

(12) �(�) =
n+1X
i=1

�i kbik :

If
P
�i kbik = 0, by Proposition 4.1 neither S(�) nor S(��) exist, so by

(10) we get �(�) = 0 =
P
�i kbik. If

P
�i kbik > 0, by Proposition 4.1 and

(10) we have
Pn+1
i=1 �i kbik = 1

r(�) = �(�). Finally, if
P
�i kbik < 0, S(��)

exists. Therefore, by (10) we obtain
n+1X
i=1

(��i) kbik =
1

r(��) = ��(�) () �(�) =

n+1X
i=1

�i kbik :

By (12), the left-hand side of (11) isX
j� j=m

�(��) =
X
j� j=m

n+1X
i=1

�i� i kbik =
n+1X
i=1

�i kbik
X
j� j=m

� i:

Since �(�) =
P
i �i kbik, it su¢ ces to prove

(13)
X
j� j=m

� i =

�
n

m

�
�
�

n

m� 1

�
:

Since there are
�
n
m

�
cases for which � i = 1 (we must have � j = �1 for m

choices of j�s out of n) and
�
n

m�1
�
cases for which � i = �1 (we must have

� j = �1 for m� 1 choices of j�s out of n), (13) follows.
Theorem 4.2 states the following. Starting from the set D(�), cross ex-

actly m faces of the simplex and go to D(��), where j� j = m. Compute
the radii of S(���) (at most one exists). By adding and subtracting the
reciprocals of these tangent spheres, where adding if S(��) exists and sub-
tracting if S(���) exists, it will be equal to

�
n
m

�
�
�
n

m�1
�
times either (i)
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the reciprocal of the radius of S(�), (ii) the negative of the reciprocal of
the radius of S(��), or (iii) zero, depending on whether S(�) exists, S(��)
exists, or neither exist.
Theorem 4.1 is a special case of Theorem 4.2 corresponding to � = 1

(so D(1) = K and therefore S(1) is the inscribed sphere) and j� j = 1 (so
S(�) is an escribed sphere). Although Theorem 4.1 is a natural extension
of the well-known two dimensional case with a similar geometric proof, its
generalization Theorem 4.2 is highly nontrivial.

5. Conclusion

In this paper I generalized a well-known theorem in plane geometry�
that the sum of the reciprocals of the radii of the three escribed circles of
a triangle equals the reciprocal of the radius of the inscribed circle� for
an n-dimensional simplex. Considering the richness of the plane geometry,
there would certainly be many other theorems on the Euclidean geometry of
Rn that generalizes the corresponding theorems in the plane geometry. For
example, [4] and [8] generalize the Euler inequality R � 2r, where R and
r are the radii of the circumcircle and the incircle of a triangle. [5] and [2]
generalize the Gergonne and Nagel points of a triangle for a simplex. Using
the closed-form formula for the radii of tangent spheres given in Proposition
4.1, it might be possible to generalize some of the well-known equations and
inequalities connected with the radii of tangent circles as reviewed in [6]. I
leave this issue for future research.
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