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RADII OF THE INSCRIBED
AND ESCRIBED SPHERES OF A SIMPLEX

ALEXIS AKIRA TODA

Abstract. It is well-known that the reciprocal of the radius of the in-
scribed circle of a triangle is equal to the sum of the reciprocals of the radii
of the three escribed circles. I generalize this theorem for an n-dimensional
simplex. In three or higher dimensions, there are many types of spheres
tangent to a simplex. I characterize the existence and uniqueness of such
spheres and derive formulas connected with their radii.

1. INTRODUCTION

Consider a triangle and its inscribed and escribed circles (Figure 1). Let
ro be the radius of the inscribed circle (incircle) and 71, 72, r3 be the radii of
the three escribed circles (excircles). It is well-known that

1 1 1 1

(1) =
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According to [6], the formula (1) is due to Steiner, published in 1828. Con-
sidering the simplicity of the formula and its proof, it would not be surprising
if the ancient Greek geometers knew about it. (1) also appears on p. 189 of
[3] and as Exercise 6 of Section 1.4 of [1].

In this paper I generalize (1) to the case of an n-simplex in a Euclidean
space R™. For an n-simplex, we can show that there exist an inscribed sphere
and one escribed sphere opposite to the inscribed sphere about each face.
Since there are n + 1 faces, there are also n + 1 escribed spheres. Letting
ro be the radius of the inscribed sphere and ry,...,r,4+1 be the radii of the
escribed spheres, we can show the relation
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Clearly (1) is a special case of (2) by setting n = 2. Contrary to the
two dimensional case, in Euclidean spaces with dimension three or higher,
there are many types of spheres that are tangent to the faces of the n-
simplex. For example, one can consider tangent spheres that are opposite to
the inscribed sphere about two faces, three faces, and so on. However, such
spheres may not always exist. In this paper I also characterize the existence
and uniqueness of such spheres, derive their radii, and further generalize the
formula (2).

FicURE 1. Incircle and excircles of a triangle. Iy is the in-
center of triangle A1AsAg and Iy, 15, I3 are excenters.

The rest of the paper is organized as follows. Section 2 provides a simple
proof of (1) and an intuitive geometric proof of (2) that generalizes the two
dimensional case. Section 3 introduces some notations and presents a few
results in linear algebra suited for analyzing the geometry of the n-simplex.
Section 4 provides an algebraic proof of (2) and further generalizes it.

2. GEOMETRIC PROOF OF (2)

First I prove (1). In Figure 1, let AjAs = ¢, AgA3 = a, AsA; = b, and
the radii of circles with centers Iy, I3, I3 be 71,79, 73, respectively. Consider
the quadrilateral A;AsI;As. Since

OA1 AL A = AIpA1As U AlgAsAs U AlgAsAq U ATjAsAs
= AL1A1Ay U A1 AsAq,
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Accounting for the area in two ways we obtain
1 1 1 1 b+c—al
—rolc+a+b)+ =-ra==ri(c+b) — —=———.
20( )+21 21( +9) rr a+b+crg

Similarly,

1 c+a—>b1

) a+b+c 70 ’

1 a+b—cl

T3 N a+b+c 70 '

Adding these three equations, we obtain (1).

The geometric proof of (2) is similar. Let P = {A;,Aa,...,Api1} be a
collection of n + 1 points in R™ that do not lie on a common hyperplane
and K = coP be the n-simplex with vertices {Ap}. (“co” denotes the
convex hull.) Let Fj, = co(P\Ay) be the face of K that does not include Ay.
Let Iy be the incenter of K and I, be the excenter that lies opposite to Iy
about Fj. (The existence and uniqueness of such points are proved in the
next section.) Let ro,..., 7,41 be the radii of the tangent spheres, with the
obvious indexation. Let |F)| be the area (n — 1-dimensional volume) of F.
We account for the volume of the polytope co(P UIy) in two ways. Since

n+1

co(PUI) = U co(loUFj) | U(IxUFy) = U co(Ix U F}),
=1 #k
it follows that
n+1
1 1 1 1 F-2|F1
Z*T0|Fj| + =7k | Fy| :Z*THFJ‘\ = — = ﬁij
Jj=1 " " j£k n Tk F 70

where F' = Y771 |Fy|. Summing over all &’s, we obtain

”§1(n+1)F—2F1n—1
k:lrk_ F 7”0_ To ’

which is (2).

3. PRELIMINARY RESULTS

In this section I introduce some notations and a few preliminary results
in order to prove (2) rigorously.

All vectors belong to R™, where n > 2. For z,y € R, (x,y) denotes the
usual inner product and the ||z|| = \/(x, z) is the Euclidean norm. The dis-
tance between a point « and a set S is defined by dist(z,y) = infycg ||z — y||.
We say that the n 4+ 1 points ai,as,...,a,11 are in generic position if the
matrix

(3) A= [a1 — Ap+1y---,0n —an+1]

is regular (nonsingular). It is easy to show that the notion of the generic
position does not depend on the order of ay, ..., an+1. The following lemma
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shows that if a1,...,a,4+1 are in generic position, any vector in R™ can be
uniquely represented as an affine combination of these points.

Lemma 3.1. If the n + 1 points ay,...,any1 are in generic position, then
any x € R™ has a unique representation r = Z"Jrl tia;, where Znﬂ t; =1.

Proof. Since by assumption A is regular, the vectors {a; — a,4+1};_, are
linearly independent. Hence for all x € R"”, there exists a unique represen-
tation

n
T — Qpt1 = Zt — Qpy1) <:>:U—Ztaz (I—Zti>an+1.
i=1

=1

The claim follows by setting t,11 :=1—> ", ;.

An n-simplex K is the convex hull of n + 1 points aq, ..., a,+1 in generic
position. For instance, a 2-simplex is a triangle in R?, and a 3-simplex is a
tetrahedron in R3. With a slight abuse of language, I define the face of an
n-simplex K by the hyperplanes that pass through all but one vertex of K.
Let m; be the face of K that does not contain ay.

In order to define spheres that are tangent to all faces of K, we need to
compute the distance between a point and a face of K. Let the matrix A be
as in (3) and define vectors by,... b, 1 by (A™Y = B = [b1,...,b,] and

(4) bpt1 = Z b;.

The following proposition gives a formula for the distance between any point
and 7.

Proposition 3.1. Let >/ t; = 1 and x = .7 tia;. Then the distance
between x and the k-th face of K, my, is given by

t
(5) dist(z, ) = ]
[1be]l”
Proof. Since B = [by,...,b,] is a regular matrix, we have by # 0. Since

{b;};_, are linearly independent, we have by+1 = — > b; # 0. Therefore
the right-hand side of (5) is well-defined.
Let us show that for all 4,5,k =1,2,...,n+ 1, we have

(6) (a; — aj,by) = 0it, — Ok,

where § is Kronecker’s delta. (6) is trivial if ¢ = j. If (6) holds for j = n+1,
then (6) is true for any j because

(a; — aj,by) = (a; — any1,b) — (aj — ant1,by)
= (0ik — Ont1,k) — (Ojk — Ong1,k) = dik — Ojk-

Therefore, without loss of generality we may assume ¢ < n and j = n + 1.
If k£ < n, then computing the (i, k) element of A’B = I,, we obtain

(@i — i1, b) = 6ik = dig — On+1ks
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o (6) holds. If k =n+ 1, then by (4) we get

(@i — an41,bnt1) = — Z — an+1,b5)

= - Z iy n+1 ] =-1= 5i,n+1 - 5n+1,n+1;

o (6) holds.

Next, I show that the vector by, is orthogonal to 7. To see this, fix any j #
k. Since 7}, passes through a; and is spanned by all vectors {a; — a;}, ik it
suffices to show that (a; — a;,b,) = 0 for ¢ # j, k. However, this is obvious
by (6) since i # k and j # k.

Finally, I show the distance formula (5). Again fix any j # k. Since by, is
orthogonal to 7y, it follows from (6) and j # k that

dist(z )—Kx_aj’bk = Tilt —aj,by)
R T gl ||ka 7ok
’ft 50— 5| = el
||bk:H 0 okl

4. ALGEBRAIC PROOF OF (2) AND GENERALIZATIONS

In this section I characterize the existence of tangent spheres and rigor-
ously prove a generalization of (2).

Let aq,...,a,+1 be points in generic position and K = co{ai,...,an+1}
be an n-simplex. Each face 7w of K divides R"™ into two half spaces, one
that contains a; and the other not. In order to refer to the position of a
point x = Z"Jrl tia; (with ) . t; = 1) relative to 7y, let 0 = (01,...,0n41)
be a tuple of +1, which I call a sign. Since o consists of n + 1 elements
which can take the value +1, there are in total 2”1 possibilities. The sign
with all 1 is denoted by 1 = (1,...,1). For any sign o, define the set

n+1 n+1
(7) D(o) = { v = tia; |(Vi)oit; > 0, ti=1 } ,
i=1 i=1

Clearly the n-simplex K is precisely D(1).

The geometrical intuition of D(o) is that for all k, a point x € D(0o) lies
on the same side as a; with respect to 7 if o = 1, and lies on the other
side of ay if o = —1. The following lemma proves this fact and also shows
that all but one D(o)’s are nonempty.

Lemma 4.1. Any x € R" belongs to at least one D(c). For any sign o,
ar € D(o) if and only if o = 1. Furthermore, D(—1) = ().
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Proof. That x € D(o) for some o follows by Lemma 3.1.

If z € D(—1), by definition there exist ¢1, ..., t,+1 such that ¢; < 0 for all
7 and Z?:Jrll t; = 1, which is obviously impossible. Therefore, D(—1) = ().

Again by Lemma 3.1, setting ¢z = 1 and t; = 0 for ¢ # k is the only way
to express ar = »_, t;a; with ), t; = 1. Therefore a;, € D(o) if and only if
o = 1.

If o # o', there is some k such that o) # o). Hence by Lemma 4.1 one
of D(c), D(¢') contains a; and the other not. Therefore D(o) # D(o”),
and clearly they do not share interior points. Therefore R™ is divided into
a total number of 2" — 1 nonempty D(o)’s. (“~1” because D(—1) = {).)

A sphere with center x and radius r is said to be tangent to K if r =
dist(z, my) for all k = 1,2,...,n+ 1. The following proposition characterizes
the existence and uniqueness of tangent spheres.

Proposition 4.1. Let o be a sign. A tangent sphere with center in D(o)
exists if and only if Y17 oi||bs]| > 0. Under this condition, the tangent

sphere is unique and its radius is given by r(c) =1/ 3" oy ||bi]].

Proof. Suppose that a sphere with center z = Z?jll t;a; € D(o) and radius

r is tangent to K. Since by definition r = dist(z, 7x,) for all k, by Proposition
3.1 we obtain

t tn
(8) _ |1‘ L | +1|

r= = = .
[[1]] [[br41

Since D(o) is defined by (7), it follows that o;t; > 0. Since o; = +1, we
get |t;| = |oiti] = o;t;. Hence by (8), t; is uniquely determined such that
t; = %bii” = ro; ||b;]|. Summing over i and noting that "' ¢; = 1, we get
St o ||bil| = 1 >0, and 7 is unique.

Conversely, if 7! o [|b;]| > 0, define r > 0 by 1= St o ||bil] > 0
and t; = ro; ||b;||. Then these r and ¢;’s satisfy o;t; > 0, > t; = 1 and (8),
so by definition there exists a sphere tangent to K with center in D(o).

Proposition 4.1 is essentially due to [7], although in their paper ||b;]| is
replaced by the (n — 1)-dimensional volume of the face but they do not
compute the volume from the given vectors {a1,...,an+1}.

By Proposition 4.1, if there is a tangent sphere with center in D(o), it is
unique. Hence, it is legitimate to denote it by S(o). Let r(o) be the radius
of S(o) if it exists. The following corollary is immediate from Proposition
4.1.

Corollary 4.1. For each sign o, exactly one of the followings hold: (i) S(o)
exists, (11) S(—o) ewists, (iii) neither S(o) nor S(—o) ezist.

Proof. If Y o;||bi]| # 0, then either > oy ||b;|| or > (—o0;) ||bi]| is positive
(but not both), so by Proposition 4.1 either S(o) or S(—o) exists (but not
both). If > o;|bi|| = 0, then > (—o;) ||bi]| = 0 also, so by Proposition 4.1
neither S(¢) nor S(—o) exist.

I define the escribed sphere by a tangent sphere corresponding to signs o
of the form o} = —1 for some k, and o; = 1 for all ¢ # k. (There are n + 1
such signs.) The following theorem rigorously proves the formula (2).



Radii of the Inscribed and Escribed Spheres of a Simplex 11

Theorem 4.1. For any n-simplex K, exactly one inscribed sphere and n+1
escribed spheres exist. Letting ro,m1,...,Tnt1 be the radii of these spheres,
(2) holds.

Proof. Since Y, ||b;|| > 0, the inscribed sphere S(1) exists. Let o be the
sign with k-th element —1 and all other elements 1, so 0’,: = —1 and af =1
for all i # k. Let us show that the k-th escribed sphere S(o") exists.

Since by (4) we have ; b; = 0, we get 3, ;. b; = —by. Taking the norm of
both sides and invoking the triangle inequality, we obtain 3, [[bs[| > [[bg||-

Equality does not hold because any n vectors of by,...,b,+1 are linearly
independent since B = [by, ..., by,] is regular. Therefore
n+1 1
(9) Dol > bell = 0< Y o fbill = —— = —
ik =1 r(@) Tk

so by Proposition 4.1 S(¢*) uniquely exists. Summing % over k and using
(9), since % =>".11bi|| and of = —1, 6% =1 (i # k), we obtain (2).

In two dimension, the only tangent circles to a triangle are the inscribed
circle and the three escribed circles. In three dimension, in addition to the
inscribed sphere and the four escribed spheres, in general there are other
tangent spheres. Figure 2 shows the edges of the tetrahedron K correspond-
ing to a; = (0,0,—1), as = (1,0,—-1)", ag = (0,1,—1)’, agy = (0,0,0)" and
tangent spheres associated with signs o = (1,1, 1,1) (inscribed sphere) and
7 =(1,1,—1,—1). The larger sphere is touching the faces of K below the
“roof-like” region D(T).

FIGURE 2. Two spheres tangent to the tetrahedron K.
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In three or higher dimension, we can further generalize the formula (2).
To this end, for each sign o define the quantity

%, (S(0) exists)
(10) x(o) = —T(EU), (S(—0) exists)
0. (Neither S(o) nor S(—o) exist)

Thus x(o) is either zero or the reciprocal of the radius of a tangent sphere,
with either a positive or negative sign. This definition is unambiguous in
view of Corollary 4.1. Furthermore, let |o| be the number of elements of o
equal to (—1), so |o| = # {ilo; = —1}. For example, |1| = 0. Define the
product o7 of two signs o, 7 by the element-wise multiplication. Note that
oT is again a sign because o; = +1 and 7; = +1.

With these definitions, we can prove the main result of this paper.

Theorem 4.2. Let o be a sign and 1 < m < n. Then

(1) > xton={ (1) (" )] v

|7|=m

| . . . .
L is the binomial coefficient.

where (;,LL) = m

Proof. Let us first show that
n+1

(12) o) = o |l
=1

If > oillbi|| = 0, by Proposition 4.1 neither S(¢) nor S(—o) exist, so by
(10) we get x(0) =0 = >0, ||bi]|. If > o;]/bi|| > 0, by Proposition 4.1 and
(10) we have 3235 07 [|bi]l = ;55 = x(0). Finally, if 30 [[bs]| < 0, S(=0)
exists. Therefore, by (10) we obtain

n+1 n+1

1
Y (o) bl = ——= = —x(0) <= x(0) =) _aibil-
p r(=o) p
By (12), the left-hand side of (11) is
n+1 n+1
Yo ox(or)= >0 aimillbill =D oilbill > T
|T|=m |T|=m i=1 =1 |T|=m
Since x(o) = >, 0i ||b]], it suffices to prove
n n
1 . _ _
® 2= () ()
|T|=m
Since there are (:1) cases for which 7; = 1 (we must have 7; = —1 for m
choices of j’s out of n) and (, ") cases for which 7; = —1 (we must have
7j = —1 for m — 1 choices of j’s out of n), (13) follows.
Theorem 4.2 states the following. Starting from the set D(o), cross ex-
actly m faces of the simplex and go to D(o7), where |7| = m. Compute

the radii of S(+o7) (at most one exists). By adding and subtracting the
reciprocals of these tangent spheres, where adding if S(o7) exists and sub-
tracting if S(—o7) exists, it will be equal to (") — (, ") times either (i)

m m—1
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the reciprocal of the radius of S(o), (ii) the negative of the reciprocal of
the radius of S(—o), or (iii) zero, depending on whether S(o) exists, S(—o)
exists, or neither exist.

Theorem 4.1 is a special case of Theorem 4.2 corresponding to ¢ = 1
(so D(1) = K and therefore S(1) is the inscribed sphere) and |7| = 1 (so
S(7) is an escribed sphere). Although Theorem 4.1 is a natural extension
of the well-known two dimensional case with a similar geometric proof, its
generalization Theorem 4.2 is highly nontrivial.

5. CONCLUSION

In this paper I generalized a well-known theorem in plane geometry—
that the sum of the reciprocals of the radii of the three escribed circles of
a triangle equals the reciprocal of the radius of the inscribed circle—for
an n-dimensional simplex. Considering the richness of the plane geometry,
there would certainly be many other theorems on the Euclidean geometry of
R™ that generalizes the corresponding theorems in the plane geometry. For
example, [4] and [8] generalize the Euler inequality R > 2r, where R and
r are the radii of the circumcircle and the incircle of a triangle. [5] and [2]
generalize the Gergonne and Nagel points of a triangle for a simplex. Using
the closed-form formula for the radii of tangent spheres given in Proposition
4.1, it might be possible to generalize some of the well-known equations and
inequalities connected with the radii of tangent circles as reviewed in [6]. I
leave this issue for future research.
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