TWO NEW PROOFS OF GOORMAGHTIGH'S THEOREM

ION PĂTRAŞCU and CĂTĂLIN I. BARBU

Abstract

In this note we present two new demonstrations of the theorem of a Belgian mathematician René Goormaghtigh.

1. Introduction

In order to state our main results we need recall some important theorems that we need in proving the Goormaghtigh's theorem. Consider a triangle $A B C$ is neither isosceles rectangular nor with circumcenter O. We present below an interesting proposition given by Goormaghtigh.

Theorem 1.1. (Goormaghtigh [7,pp. 281 - 283]). Let $A^{\prime}, B^{\prime}, C^{\prime}$ be points on $O A, O B, O C$ so that

$$
\frac{O A^{\prime}}{O A}=\frac{O B^{\prime}}{O B}=\frac{O C^{\prime}}{O C}=k,
$$

$k \in \mathbb{R}_{+}^{*}$, then the intersections of the perpendiculars to $O A$ at $A^{\prime}, O B$ at B^{\prime}, and $O C$ at C^{\prime} with the respective sidelines $B C, C A, A B$ are collinear.
R. Musselman and R. Goormaghtigh are given in [7] a proof of this theorem using complex numbers. A synthetic demonstration is also given by K. Nguyen meet in [9].
Theorem 1.2. (Kariya [3, p. 109]). Let C_{a}, C_{b}, C_{c} the points of tangency of the incircle with the sides $B C, C A, A B$ of triangle $A B C$ and I center of the incircle. On the lines $I C_{a}, I C_{b}, I C_{c}$ the points $A^{\prime}, B^{\prime}, C^{\prime}$ are considered in the same direction so that $I A^{\prime}=I B^{\prime}=I C^{\prime}$. Then the lines $A A^{\prime}, B B^{\prime}$, and $C C^{\prime}$ are concurrent.
Theorem 1.3. (Desargues [5, p. 133]). Two triangles are in axial perspective if and only if they are in central perspective.

Keywords and phrases: Goormaghtigh's theorem; Miquel's point; complete quadrilateral
(2010) Mathematics Subject Classification: 26D05; 26D15; 51N35

Theorem 1.4. (Miquel [6, pp. 233 -234]). The centers of the circles of the four triangles of a complete quadrilateral are on a circle. (Miquel's Circle).

Theorem 1.5. (Steiner [6, p. 235]). Miquel's point of the circles determined by the four triangles of a complete quadrilateral is situated on Miquel's circle.

Theorem 1.6. (Sondat [11, p. 10]). If two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are perspective and orthologic, then the center of perspective P and the orthologic centers Q and Q^{\prime} are on the same line perpendicular to the axis of perspectivity d.

Theorem 1.7. (Thébault [12, pp. 22-24]). If two triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are perspective and orthologic, with the center of perspective P and the orthologic centers Q and Q^{\prime}, then the conics $A B C P Q$ and $A^{\prime} B^{\prime} C^{\prime} P Q^{\prime}$ are equilateral hyperbolas.

Theorem 1.8. (Brianchon-Poncelet [4, pp. 205-220]). The centers of all equilateral hyperbolas passing through the vertices of a triangle $A B C$ lie on the Euler circle of the triangle.

2. MAIN RESULTS

In this section we present two new demonstrations of the theorem of a Belgian mathematician René Goormaghtigh and some consequences deriving from this theorem.

Solution 1. We noted with $A^{\prime \prime}$ the point of intersection of perpendiculars taken at B^{\prime} and C^{\prime} on the $O B, O C$ respectively. Similarly we define the points $B^{\prime \prime}$ and $C^{\prime \prime}$ (see Figure 1).

Since $O A=O B=O C$, from the relation

$$
\frac{O A^{\prime}}{O A}=\frac{O B^{\prime}}{O B}=\frac{O C^{\prime}}{O C}=k
$$

we get $O A^{\prime}=O B^{\prime}=O C^{\prime}$. Because the lines $O A^{\prime}, O B^{\prime}, O C^{\prime}$ are perpendicular on $B^{\prime \prime} C^{\prime \prime}, C^{\prime \prime} A^{\prime \prime}$, and $A^{\prime \prime} B^{\prime \prime}$ respectively, then the point O is the incenter of the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Applying theorem 2 in the triangle $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ for the points A, B, C, it results that the lines $A A^{\prime \prime}, B B^{\prime \prime}$ and $C C^{\prime \prime}$ are concurrent (at one of Kariya's points which corresponds to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ triangle), then triangles $A B C$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are homological. Thus, according to theorem 3, that the points of intersection of lines $A B$ and $A^{\prime \prime} B^{\prime \prime}, B C$ and $B^{\prime \prime} C^{\prime \prime}$, and $C A$ and $C^{\prime \prime} A^{\prime \prime}$ are collinear.

Denote by X the intersection of the lines $B C$ and $B^{\prime \prime} C^{\prime \prime}$. Similarly we define the points Y and Z.

Solution 2. Without restricting the generality suppose that $\angle B C A>$ $\angle A B C$. Let us designate by R the radius of the circle triangle $A B C$, by A_{1} intersection of the tangent in A to circumcircle of the triangle $A B C$ with the line $C B$, by T and X^{\prime} the projections of the points B and X on this tangent, by M and M^{\prime} the projections of points A^{\prime} and O, respectively, with the line $B T$, and by A_{1}^{\prime} the intersection of $B C$ and $O M^{\prime}$ (see Figure 2).

We have: $\angle C A A_{1}=\angle A B C, \angle A C A_{1}=\angle B A C+\angle A B C$ and

$$
\begin{gathered}
\angle A A_{1} B=180^{\circ}-\angle B A C-2 \cdot \angle A B C \\
=\angle B C A-\angle A B C, \angle C O A_{1}^{\prime}=2 \cdot \angle A B C-90^{\circ} .
\end{gathered}
$$

Applying the law of sines in the triangle $O C A_{1}$, we have

$$
\frac{A_{1}^{\prime} C}{\sin \left(2 B-90^{\circ}\right)}=\frac{O C}{\sin (C-B)}
$$

so

$$
A_{1}^{\prime} C=\frac{-R \cos 2 B}{\sin (C-B)}
$$

Because $X X^{\prime}=A A^{\prime}=O A-O A^{\prime}=R(1-k)$, then

$$
\begin{equation*}
X A_{1}=\frac{X X^{\prime}}{\sin (C-B)}=\frac{R(1-k)}{\sin (C-B)} \tag{1}
\end{equation*}
$$

From $\frac{O A^{\prime}}{O A}=\frac{A_{1}^{\prime} X}{A_{1}^{\prime} A_{1}}=k$, we get

$$
\begin{equation*}
\frac{A_{1}^{\prime} X}{X A_{1}}=\frac{k}{1-k} \tag{2}
\end{equation*}
$$

From relations (1) and (2) we get

$$
\begin{equation*}
A_{1}^{\prime} X=\frac{k}{1-k} \cdot \frac{R(1-k)}{\sin (C-B)}=\frac{k R}{\sin (C-B)} \tag{3}
\end{equation*}
$$

Since,

$$
\begin{equation*}
X C=X A_{1}^{\prime}+A_{1}^{\prime}=\frac{R(k-\cos 2 B)}{\sin (C-B)} \tag{4}
\end{equation*}
$$

Because $\angle M^{\prime} O B=2 \cdot \angle A C B-90^{\circ}, B M^{\prime}=B O \cdot \sin \left(2 C-90^{\circ}\right)=-R \cos 2 C$, $M M^{\prime}=O A^{\prime}=k R$, then $B M=B M^{\prime}+M M^{\prime}=R(k-\cos 2 C)$. Since

$$
\begin{equation*}
X B=\frac{B P}{\sin (C-B)}=\frac{R(k-\cos 2 C)}{\sin (C-B)} \tag{5}
\end{equation*}
$$

From relations (4) and (5) we get

$$
\frac{X B}{X C}=\frac{k-\cos 2 C}{k-\cos 2 B} .
$$

Similarly it is shown that

$$
\frac{Y C}{Y A}=\frac{k-\cos 2 A}{k-\cos 2 C}
$$

and

$$
\frac{Z A}{Z B}=\frac{k-\cos 2 B}{k-\cos 2 A}
$$

We obtain that

$$
\frac{X B}{X C} \cdot \frac{Y C}{Y A} \cdot \frac{Z A}{Z B}=1
$$

and from the converse of Menelaus's theorem results that points X, Y, and Z are collinear.

Theorem 2.1. Let us consider C_{1}, C_{2}, C_{3} and \lceil the circumcircles of the triangles $A Y Z, B Z X, C X Y$, and respectively $A B C$. The circles C_{1}, C_{2}, C_{3}, and \subset pass through a common point.

The proof results from theorem 5 .

Let P be the corresponding point of Miquel complete quadrilateral $A B X Y C Z$ (see Figure 3).

Theorem 2.2. Centers of circles $C_{1}, C_{2}, C_{3}, \complement$ and point P are on the same circle ふ.

The proof results from theorems 4 and 5.
Theorem 2.3. Let us consider $C_{1}^{\prime}, C_{2}^{\prime}$, and C_{3}^{\prime} the circumcircles of the triangles $A^{\prime \prime} Y Z, B^{\prime \prime} Z X$, and respectively $C^{\prime \prime} X Y$. The circles $C_{1}^{\prime}, C_{2}^{\prime}$, and C_{3}^{\prime} pass through a common point.

The proof results from theorem 5 .
Let us designate by $O_{a}, O_{b}, O_{c}, O_{a}^{\prime}, O_{b}^{\prime}, O_{c}^{\prime}$ the circumcenters of the triangles $A Y Z, B Z X, C X Y, A^{\prime \prime} Y Z, B^{\prime \prime} Z X, C^{\prime \prime} X Y$, respectively, by Q the point of Miquel of $A^{\prime \prime} C^{\prime \prime} X Z B^{\prime \prime} Y$ complete quadrilateral (see Figure 4).

Open problems:

1) Point Q is on circle \aleph.
2) Point O is on Aubert's line of complete quadrilaterals $Y A B X C Z$ and $X Z A^{\prime \prime} C^{\prime \prime} B^{\prime \prime} Y$.

Remark 2.1. Goormaghtigh's theorem is true for $k<0$, where $\overrightarrow{O A^{\prime}}=k \overrightarrow{O A}$, $\overrightarrow{O B^{\prime}}=k \overrightarrow{O B}, \overrightarrow{O C^{\prime}}=k \overrightarrow{O C}$, the demonstration is similar.

Remark 2.2. Points $A^{\prime \prime}, B^{\prime \prime}$ and $C^{\prime \prime}$ are on the perpendicular bisectors of the sides of triangle $A B C$, therefore the triangles $A B C$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are bilogical, O is a common center of orthology.

Remark 2.3. If $k=0$ Goormaghtigh's theorem remains true as a special case of Bobillier's theorem [10, p.119].

Remark 2.4. For $k=\frac{1}{2}$ we obtain Ayme's theorem [2].

Remark 2.5. For $k=1$ we obtain Lemoine's theorem and $X Y Z$ is Lemoine's line of the triangle $A B C$ [3, p.155].

Remark 2.6. Theorem 4 is true for any transversal $X Y Z$ which cuts the sides of triangle $A B C$, the demonstration remains the same.

Remark 2.7. Because $O_{a} O_{a}^{\prime}, O_{b} O_{b}^{\prime}, O_{c} O_{c}^{\prime}$ are the perpendicular bisectors of the segments $Y Z, Z X$, and $X Y$ respectively, then $O_{a} O_{a}^{\prime}\left\|O_{b} O_{b}^{\prime}\right\| O_{c} O_{c}^{\prime}$.

Remark 2.8. The triangles $A B C$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are perspective, $X Y Z$ being the axis of perspective. Let S be the perspective center of triangles $A B C$ and $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Theorem 2.4. The lines $O S$ and $X Y Z$ are perpendicular.

The proof results by Sondat's theorem (see Figure 5).

Theorem 2.5. The conics $A B C S O$ and $A^{\prime} B^{\prime} C^{\prime} S O$ are equilateral hyperbolas.

Proof. Because the circumcenter O is the common center of orthology, by Theorem 1.7 we obtain the conclusion.

Corollary 2.6. The centers of the conics $A B C S O$ and $A^{\prime} B^{\prime} C^{\prime} S O$ lie on the Euler circles of the triangles $A B C$, respectively $A^{\prime} B^{\prime} C^{\prime}$.

The proof results from Theorems 1.8 and 2.5 (see Figure 5).

Corollary 2.7. The points P ans Q are the focus of parabolas tangent to the sides of the complet quadrilaterals $A B X Y C Z$ and $A^{\prime \prime} C^{\prime \prime} X Z B^{\prime \prime} Y$, respectively.
(see [1, p. 109], Figure 5).

3. Dynamic properties

In this section we examine the dependence of considered configuration on homothety coefficient k. Firstly formulate

Lemma 3.1. Given two points A, B. The map f transforms the lines passing through A to the lines passing through B and conserve the crossratios of the lines. Then the locus of points $l \cap f(l)$ is a conic passing through A and B.

Indeed if X, Y, Z are three points of the thought locus, then lines l and $f(l)$ intersect the conic $A B X Y Z$ in the same point.

Lemma 3.1 has also a dual formulating: if f is a projective map between lines a and b then the envelop of lines $A f(A)$ is a conic touching a and b.

Using Lemma 3.1 we obtain that the envelop of lines $X Y Z$ from Theorem 1.1 is a parabola touching the sidelines of $A B C$, and the locus of perspectivity centers from Theorem 1.2 is the Feuerbach hyperbola.

Theorem 3.1. Point P from Theorem 2.1 is fixed.
Proof. Immediately follows from Lemma 3.1 and Corollary 2.7.
Theorem 3.2. The locus of points Q is a line passing through O.
Proof. Using polar transformation with center O we obtain from Theorem 2.5 that two parabolas from Corollary 2.7 are homothetic. Thus all points Q are the foci of homothetic parabolas.

Acknowledgement. The last section of the article was created by $\mathbf{M r}$. Alexey Zaslavsky, and the authors are grateful to him!

References

[1] Akopyan, A. V. and Zaslavsky, A. A., Geometry of Conics, American Mathematical Society, 2007, 109.
[2] Ayme, J. L. Geometry, http://pagesperso-orange.fr/jl.ayme/
[3] Barbu, C., Fundamental Theorems of Triangle Geometry (Romanian), Ed Unique, Bacău, 2008, 109.
[4] Brianchon, C. J. and Poncelet, J. V., Recherches sur la détermination d'une hyperbole équiatère, Gergonne's Annales de Math. 11(1820/21), 205-220.
[5] Court, N., College Geometry, Johnson Publishing Company, New York, 1925, 133.
[6] Mihalescu, C., Remarkable Elements of Geometry (Romanian), Ed. SSMR, Bucharest, 2007, 233-235.
[7] Musselman, J. R. and Goormaghtigh, R., Advanced Problem 3928, Amer. Math. Monthly, 46(1939), 601; solution, 48(1941), 281-283.
[8] Neuberg, V., Mathesis, 1922, 163.
[9] Nguyen, K. L., A Synthetic Proof of Goormaghtigh's and Generalization of Musselman's Theorem, Forum Geometricorum, 5(2005), 17-20.
[10] Nicolescu, L. and Boscoff, V., Practical Problems of Geometry (Romanian), Technical Publishing House, Bucharest, 1990, 119.
[11] Sondat, P., L'intermédiaire des mathématiciens, 1894, 10 [question 38, solved by Sollerstinsky, 94].
[12] Thébault, V., Perspective and Orthologic Triangles and Tetrahedrons, Amer. Math. Monthly, 59(1952), 24-28.

Received: January 12, 2012.

FRAŢII BUZEŞTI COLLEGE
ION CANTACUZINO 15, S33, SC. 1, AP. 8, CRAIOVA, ROMANIA
E-mail address: patrascu_ion@yahoo.com

VASILE ALECSANDRI COLLEGE
IOSIF COCEA 12, SC. A, AP. 13, BACĂU, ROMANIA
E-mail address: kafka_mate@yahoo.com

