
INTERNATIONAL JOURNAL OF GEOMETRY
Vol. 6 (2017), No. 2, 93 - 102

On Generalizations of Bundle Theorem and

Miquel’s Six Circles Theorem on the Plane

KIEN TRUNG NGUYEN, SOMNUEK WORAWISET,
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Abstract. Bundle theorem and Miquel’s six circles theorem are two
well-known theorems that concern the property of a system of points on the
plane, where some of quadruples of points are concyclic. In this paper we
propose generalizations for these two theorems. We call a generalization of
bundle theorem the first six conics theorem and a generalization of Miquel’s
six circles theorem the second six conics theorem, as they are both related
to six conics in their configuration. Based on these two generalizations,
interesting results are also discussed.

1. Introduction

We investigate the property concerning 8 points and six circles on the
plane in the setting of bundle theorem; see Hartmann [2]. In general, bundle
theorem regards a property of a Möbius plane that is fulfilled by ovoidal
Möbius planes only; see Kahn [5]. In 1996, Santos [4] considered this the-
orem in normed space and proved that if the bundle theorem holds in a
strictly convex and smooth normed plane, then the corresponding plane is
Euclidean.

Another well-known theorem in Euclidean geometry, which is closely
related to bundle theorem, is the so-called Miquel’s six circles theorem
(MSCT); see Pedoe [7].

In 1960 Asplund and Grünbaum [1] investigated MSCT in normed space.
They stated that, in a strictly convex and smooth normed plane MSCT
holds if all of the six circles have the same radius. Margarita Spirova [8]
further proved that MSCT is also correct on arbitrary normed plane, i.e.,
the normed plane not requiring the smoothness and strict-convexcity. In
addition, if MSCT holds in a strictly convex and smooth normed plane,
then this plane is Euclidean. Yaglom [6] showed in 1979 that, MSCT is also
correct if we consider the similar setting of the theorem on the Minkowskian
plane and the Galelian plane.

We investigate in this paper the generalizations of the two theorems, say
bundle theorem and MSCT, based on a projective approach. We know
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Figure 1. Bundle theorem

that in the Euclidean model of projective plane, every circle always passes
through two cyclic points; see Gallier [3]. Therefore, if we choose an appro-
priate projective basis so that the two points contained in a conic S become
two cyclic points, then S is a circle. We apply this property to generalize
some results in the planar geometry. Precisely, by adding two cyclic points
to the setting of bundle theorem and MSCT, we obtain some results that
are extensions of these two theorems.

The paper is organized as follows. Section 2 considers the first six conics
theorem, which is a generalization of bundle theorem. Moreover, we study
in Section 3 a generalization of Miquel’s six circles theorem, say the second
six conics theorem. Interesting results derived from the first and the second
six conics theorems are also discussed.

2. The First Six Conics Theorem - A Generalization of Bundle
Theorem

Let us first review the so-called bundle theorem as follows.

Theorem 2.1. (Bundle theorem) If eight points Ai, A
′
i for i = 1, . . . , 4

such that five of six quadruples {Ai, A
′
i, Aj , A

′
j} are concyclic, then the sixth

quadruple is also concyclic.

As mentioned above, every circle always passes through two cyclic points.
Therefore, the bundle theorem can be generalized as the following one.

Theorem 2.2. (First six conics theorem) Given ten points Ai, A
′
i,M,N for

i = 1, . . . , 4 such that five of hexatruples Ai, A
′
i, Aj , A

′
j ,M,N with i, j ∈

{1, . . . , 4} and i 6= j are inscribed in a conic, then the sixth one is inscribed
another conic.

To prove this theorem, let us first restate the so-called three conics theo-
rem:

Theorem 2.3. (Three conics theorem) If three conics pass through two given
points, then the line joining the others two intersections of each pair of conics
are concurrent.

Furthermore, we state the inverse version as in what follows:
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Figure 2. The first six conics theorem

Figure 3. Three conics theorem. S1-red; S2-orange

Figure 4. S12-red; S23-orange; S34-blue; S41-grey; S13-
black; S24-dash

Theorem 2.4. (Inverse of three conics theorem) Two conics S1, S2 meet
at four points M,N,A3, A

′
3. If A1A

′
1 and A2A

′
2 are chords of S1 and S2

respectively which meet on A3A
′
3, then the six points M,N,A1, A

′
1, A2, A

′
2

lie on a conic.

For illustration of the three conics and inverse three conics theorems, one
can refer to Figure 3

We now apply the three conics and inverse three conics theorem to prove
Theorem 2
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Figure 5. S12-red; S23-orange; S34-blue; S41-grey; S13-
black; S24-dashed black; S′-dashed red.

Proof. Without loss of generality, suppose that there are five conics Sij

which passes through Ai, A
′
i, Aj , A

′
j , M , N for (i, j) ∈ {(1, 2); (2, 3); (3, 4); (4, 1); (1, 3)}.

We prove that A2, A
′
2, A4, A

′
4,M,N are inscribed in a conic, say S24. Denote

by B12,34, B
′
12,34 the other intersections, except M,N , of S12, S34. Applying

the three conics theorem for S12, S23, S41 , the four lines A2A
′
2, A3A

′
3, B12,34, B

′
12,34

are concurrent. By the same argument for S12, S41, S34 and S12, S13, S34 ,
and we also obtain A1A

′
1, A4A

′
4, B12,34, B

′
12,34 and A1A

′
1, A3A

′
3, B12,34B

′
12,34

concurrent, respectively. Therefore, A1A
′
1, A2A

′
2, A3A

′
3, A4A

′
4 and B12,34B

′
12,34

are concurrent. By the inverse three conics theorem and the concurrency of
A2A

′
2, A4A

′
4, B12,34B

′
12,34, the points A2, A

′
2, A4, A

′
4,M,N are inscribed in

a conic.
By exchanging the role of S23 and S34 in the proof of Theorem 2, we

obtain another version as follows.

Proposition 2.1. Denote B12,34, B
′
12,34 are the others intersections of S12

and S34. Denote B23,41, B
′
23,41 are the others intersections of S23 and S41.

Then B12,34, B
′
12,34, B23,41, B

′
23,41,M,N are inscribed in a conic S′. (See Fig.

5)

In Proposition 2.1 let M and N be two cyclic points, then all conics in
the proposition are circles. We get another circle in the structure of bundle
theorem.

Proposition 2.2. If eight points Ai, A
′
i for i = 1, . . . , 4 such that five

of six quadruples Ai, A
′
i, Aj , A

′
j are inscribed in a circle Sij with i, j ∈

{1, . . . , 4} and i 6= j. Let the intersections of S12 and S34 be B12,34, B
′
12,34

. Also, denote the intersections of S23 and S41 by B23,41, B
′
23,41 . Then

B12,34, B
′
12,34, B23,41, B

′
23,41 inscribed in a circle S′.

3. The Second Six Conics Theorem - A Generalization of
Miquel’s Six Circles Theorem

For simplicity an index i ≥ 4 coincides with i mod 4 (1 ≤ i ≤ 4). We first
restate Miquel’s six circles theorem (MSCT) as follows
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Figure 6. Bundle theorem was completed with a seventh
circle S′. S12-red; S23-orange; S34-blue; S41-grey; S13-black;
S24- dashed black; S′- red dash

Figure 7. Miquel’s six circles theorem

Theorem 3.1. (Miquel’s six circles theorem) If eight points Ai, A
′
i for i =

1, . . . , 4 such that four quadruples Ai, A
′
i, Ai+1, A

′
i+1 and A1, A2, A3, A4 are

concyclic, then A′
1, A

′
2, A

′
3, A

′
4 are also concyclic.

MSCT can be illustrated by Fig. 7 MSCT can be generalized by the
following result.

Theorem 3.2. (Second Six Conics Theorem) If ten points Ai, A
′
i,M,N for

= 1, . . . , 4 such that four hexatruples Ai, A
′
i, Ai+1, A

′
i+1,M,N are inscribed

in conic Si(i+1) for i = 1, 4 and A1, A2, A3, A4,M,N are inscribed in conic
S, then A′

1, A
′
2, A

′
3, A

′
4,M,N are inscribed in another conic.

Proof. For i 6= j, Denote the equation of AiAj and Sij by Lij = 0 and
Sij = 0, respectively. Also, the equation of conic S is S = 0. By choosing
a suitable projective basis, we obtain A1 = (0, 0, 1), A2 = (0, 1, 0), A3 =
(1, 0, 0), A4 = (1, 1, 1),M = (m,n, p). These five points determine exactly
the conic S. Assume that the equation of S is

S = ax2 + by2 + cz2 + dxy + eyz + fzx = 0.

As S consists of five points A1, A2, A3, A4,M , the equation of S becomes

S = dxy + eyz + fzx = 0.
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Figure 8. The second six conics theorem. S-black; S12-red;
S23-orange; S34-blue; S41-grey; S′-dashed black

Here, d, e, f satisfy the following equations

{
d + e + f = 0.

dmn + enp + fpm = 0.
(1)

Similarly, we obtain the equations of AiAj for i 6= j as follows.

L12 = x = 0.

L23 = z = 0.

L34 = y − z = 0.

L41 = −x + y = 0.

As S and Sij intersect at four points Ai, Aj ,M,N and MN , AiAj (with
equations L = 0 and Lij = 0) also pass through these points, we get Sij as
a linear combination of S and LLij

Sij = aijS + bijLLij .

Because Sij differ from LLij , hence aij 6= 0. By assigning Sij :=
Sij

aij
and

Lij := cijLij , where cij :=
bij
aij

, We obtain

Sij = S + LLij

and

L12 = c12x

L23 = c23z

L34 = c34(y − z)

L41 = c41(−x + y)
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Now, we prove that S = LijLkl + LjkLli. Indeed, assume it is correct, we
have

S = L12L34 + L23L41

⇔ dxy + eyz + fzx = c12xc34(y − z) + c23zc41(−x + y)

⇔ dxy + eyz + fzx = c12c34xy + c23c41yz − (c12c34 + c23c41)xz

We trivially choose d, e, f such that d = c12c34, e = c23c41, f = −c23c41 −
c23c41. Obviously, the coefficents d, e, f such that (1) holds or S = LijLkl +
LjkLli We now focus on the theorem. Remind that Sli, Sij pass through
Ai, A

′
i,M,N and L passes through M,N . By Sli − Sij = L(Lli − Lij), we

observe that Li := Lli − Lij contain Ai and A′
i. Consider

Sij + LiLj

=S + LLij + (Lli − Lij)(Lij − Ljk)

=LijLkl + LjkLli + LLij + LliLij − LliLjk − L2
ij + LijLjk

=Lij(L− Lij + Ljk + Lkl + Lli)

=Lij(T − 2Lij),

where T = L + Lij +jk +Lkl + Lli. Assigning: L′
ij := T − 2Lij , we have

Sij +LiLj = LijL
′
ij . As Sij and LiLj both pass through Ai, Aj , A

′
i, A

′
j , and

Lij passes through Ai, Aj , then L′
ij contains A′

i, A
′
j .

Denote by S′, S′ = L′
ijL

′
kl + L′

jkL
′
li. We prove S′ is a conic passing through

A′
1, A

′
2, A

′
3, A

′
4,M,N . Indeed, we get A′

i ∈ S′ as A′
i is in L′

li and L′
ij for

i = 1, 4. We just prove that S′ contains M,N . We have

S′ = L′
ijL

′
kl + L′

jkL
′
li

= (T − 2Lij)(T − 2Lkl) + (T − 2Ljk)(T − 2Lli)

= 2T 2 − 2T (Lij + Ljk + Lkl + Lli) + 4(LijLkl + LjkLli)

= 2T 2 − 2T (T − L) + 4S

= 2LT + 4S.

It shows clearly that S′ passes through M,N as L and S pass through M,N .
The theorem has been proved.

Next, we get some corollaries concerning this theorem as below

Corrolary 3.1. Given two conics S and S′ intersecting at two points, say
M,N . An arbitrary line passes through M and cuts S, S′ at A2, A

′
3, re-

spectively. Another line passes through N cuts S, S′ at A3, A
′
2, respectively.

Suppose that MA3 and NA2 cut S′ at A′
4 and A′

1, respectively. Moreover,
MA′

3,MA′
2 cut S again at A4, A1, respectively. Then A1, A

′
1, A4, A

′
4,M,N

are inscribed in a conic.

Proof. This corollary is derived directly from Theorem 3.2 if the conics
S1, S2, S3 are degenerated into pairs of lines.

Corrolary 3.2. If three conics S12, S34, S passes through M,N and S12, S34

tangent to S at A12, A34, respectively. The conic S23 meets S12, S34 again
at A′

12, A
′
34. Then there exists a conic S′ passing through M,N and tangent

to S12, S34 at A′
12, A

′
34.
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Figure 9. S and S′-black; S12-red; S23-orange; S34-blue;
S41-dashed grey

Figure 10. S-black; S12-red; S23 ≡ S41-orange; S34-blue;
S′-dashed black

Proof. In Theorem 3.2, let A1 ≡ A2 ≡ A12 , A3 ≡ A4 ≡ A34, A
′
1 ≡ A′

2 ≡
A′

12, S23 ≡ S41. The result follows.
Now we define two additional points of a quaterlateral ABCD on the

projective plane as the intersections of AB and CD, BC and DA. We
obtain the following corollary.

Corrolary 3.3. Given six points Ai,M,N for i = 1, . . . , 4 on a conic S.
Additional points of A1MA3N , A2MA4N and two points M,N lie on a
conic.

Proof. Let A′
1, A

′
3 be the intersections of A2M and A4N , MA4 and NA2,

respectively. Similarly, let the intersections of A3M and A1N , A1M and
A3N be A′

2, A
′
4. Moreover, the conics S12, S23, S34, S41 in Theorem 3.2 are

degenarated into couples of lines. We obtain the corrollary.
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Figure 11. S-black; S12-red; S23-orange; S34-blue; S41-
grey; S′-dashed black

4. Conclusions

We generalized bundle theorem and MSCT by a projective approach.
Based on three conics theorem, we derive the so-called first six conics the-
orem which is a generalizations of bundle theorem. Moreover, by choosing
an appropriate projective basis, we obtain the second six conics theorem -
a generalization of MSCT. Also, we discuss corrollaries related to these two
generalizations. It is promising to apply the technique of adding two cyclic
points to existing models in order to generalize some further results, which
are related to circles in Euclidean plane.
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