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THE FOUR ELLIPSES PROBLEM

GEORGE E. LEFKADITIS, THOMAS L. TOULIAS1 and
STELIOS MARKATIS

Abstract. Consider three coplanar line segments, having one end point

in common, where only two of them are permitted to coincide. Three concen-

tric ellipses can then be defined, say c i, i = 1,2,3, such that every two of these

three line segments are considered to be the two conjugate semi–diameters of

each ellipse. The present work solves the plane–geometric problem (referred

by the authors as the “Four Ellipses” problem) of determining a concentric

to c i ellipse p, circumscribing all c i, i = 1,2,3, using only Synthetic Plane

Projective Geometry. G. A. Peschka (1879), in his proof of Karl Pohlke’s Fun-

damental Theorem of Axonometry, solves the above problem through a par-

allel projection of a sphere onto the c i ’s common plane. Therefore, Peschka’s

methodology (and others) addresses the Four Ellipses problem not as a two–

dimensional one but uses the three–dimensional space as a reference space

(which the sphere’s parallel projection requires). Investigating further the

Four Ellipses problem, it is also concluded that the sum of the squares of

the three given line segments (which define the three ellipses c i, i = 1,2,3)

was found to be equal to the sum of squares of the semi–axes of their circum-

scribed ellipse p. A series of figures clarify the performed geometric construc-

tions.

1. INTRODUCTION

Let e be a plane, embedded in a three–dimensional Euclidean space, E3.

The Karl Pohlke’s Theorem, widely known as the Fundamental Theorem of

Axonometry2, is a theorem of the three–dimensional Euclidean space. Specif-

ically, see [4, pg. 250]:
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Theorem 1.1 (Pohlke). Consider a bundle of three arbitrary chosen line seg-

ments on the Euclidean plane e, say OA, OB and OC, where only one can be

of zero length, while points O, A, B and C are not collinear. These segments

can always be considered as the parallel projection of three equal and orthogo-

nal to each other line segments in the ambient Euclidean space E3, say O∗A∗,

O∗B∗ and O∗C∗. The orthogonal projection is considered as a special case

(Fig. 1).

FIGURE 1. Parallel projection for Pohlke’s Theorem.

In one of the proofs of this Theorem, a parallel projection of a sphere onto

plane e was used; see [5] or [7] for details. In this specific proof, three con-

centric and coplanar ellipses are considered, say c1, c2 and c3, satisfying the

following property by Peschka, [5, pg. 244]:

Consider the non–collinear points O,P,Q,R on plane e forming

three line segments OA, OB and OC, where two of them can

coincide. If the pairs (OB,OC), (OC,OA) and (OA,OB) are

considered as the pairs of conjugate semi-diameters of three

ellipses c1, c2 and c3 respectively, then a new concentric (to c i)

ellipse exists which circumscribes all c i, i = 1,2,3.

The proof of the above property is derived with the help of an appropriate

parallel projection of space E
3 onto plane e, projecting an appropriate sphere

S of E3 onto plane e (on which OA, OB and OC lie)3. Under this parallel

projection, a cylindrical surface is created tangent to sphere S around a max-

imum circle p∗∈S, which is the sphere’s contour resulting from its parallel

projection; see Fig. 2. Hence, p∗ is parallel–projected onto circumscribing

common tangent ellipse p (of the ellipses c i on plane e), while orthogonal

line segments O∗A∗, O∗B∗ and O∗C∗ are parallel–projected onto conjugate

to each othersemi–diameters OA, OB and OC respectively of c i. Accord-

ing to the above property, these ellipses are defined by pairs of conjugate

semi–diameters (OB,OC), (OC,OA) and (OA,OB) respectively, which are

the parallel projections of the corresponding maximum circles of the sphere.

These maximum circles belong to the planes defined respectively by segments

3The use of sphere appears for the first time in a work by J.W.v. Deschwanden and subse-

quently by G. Peschka in his elementary proof of Pohlke’s Fundamental Theorem of Axonom-

etry; see [7].
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(O∗B∗,O∗C∗), (O∗C∗,O∗A∗) and (O∗A∗,O∗B∗). Figure 2 demonstrates the

above projections method.

FIGURE 2. Pohlke’s Theorem through a parallel–projected

sphere S onto plane e.

In principle, the Peschka’s property, as described earlier, is a plane–geometric

property. The problem now of proving the Peschka’s property (i.e. the prob-

lem of determining the concentric circumscribing ellipse p of all c i ’s), ex-

clusively in terms of Plane Geometry (i.e. without the use of the Euclidean

three–dimensional Geometry), shall be investigated in this paper and shall

be called hereafter as the “Four Ellipses” problem, while p shall be called as

a “common tangential ellipse” (c.t.e.) of the ellipses c i, i = 1,2,3. A visualiza-

tion of the Four Ellipses problem is provided in Fig. 3. The derived solution of

the Four Ellipses problem is thus considered separately from the well–known

Pohlke’s Theorem, which provided the initial motivation for this work.

FIGURE 3. The Four Ellipses Problem.

For the derivation of c.t.e. p, plane e is considered to be the Augmented

Euclidean Plane, giving us the ability to use Euclidean as well as Projective

Geometry’s properties and methodologies.

Our approach of proving the existence of c.t.e. p is consisted of three stages:

The first two stages, presented in Section 2, two general and useful Lemmas

are proved. With their help, the main Theorem addressing the Four Ellipses

Problem, is also proved in the third stage in Section 3. Throughout our study
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we consider, whenever is needed, that the following notions and geometric

constructions related to an ellipse, are known, either from the theory of the

Plane Projective Geometry, or from the Euclidean Plane Geometry. Particu-

larly, we consider as known:

• The determination of the ellipse’s principal axes from a given pair

of ellipse’s conjugate semi–diameters (Rytz4 construction); see [6, pg.

69] or [3, pg. 183] for details.

• The notion of the specific orthogonal homology that transforms an el-

lipse to its secondary (inner) circle, as well as the invariant properties

of this transformation.

• The determination of the common points between a line and an el-

lipse defined by its two principal axes or by its two conjugate semi–

diameters.

• The determination of the conjugate of a given diameter of an ellipse,

as well the (common) tangent lines of the ellipse at the end points of

a diameter.

As far as the figures (in Sections 2 and 3) are concerned, we note that

these figures can be considered as an medium of organizing the correspond-

ing logical/geometrical processes, and they do not have any real contribution

to our investigation other than providing optical feedbacks; see [2]. We fi-

nally point out that each of the three stages, described earlier, can be rep-

resented by a single figure. However, for better understanding and clarity

of the involved geometric constructions, each of these three figures (depicting

the three stages) is broken into a succession sequence of intermediate figures.

2. USEFUL LEMMAS

In this section two Lemmas are presented. Since the proofs of these Lem-

mas are based on the properties of a projective transformation called orthogo-

nal homology, the plane e —in which our problem is restricted— is considered

to be the augmented Euclidean plane.

Lemma 2.1. Consider an ellipse c′ having principal semi–axes OA′ and OB

of length α and β respectively, 0 < β<α. Let E′ be the focus corresponding to

A′, with foci separation (foci semi–distance) |OE′| = γ. Then, for an arbitrary

point L′ of the secondary circle c(O,OB) the ellipse c′1 defined by the pair of

conjugate semi–diameters (OE′,OL′) is tangent to c′; see Fig. 4.

Proof.From the Projective Geometry it is known that there exists an orthog-

onal homology, say f , on the plane, mapping ellipse c′ to circle c, with axis

the line spanned by OB and pair of corresponding points (A′, A) under f . If

the ellipse c′1 is tangent internally to ellipse c′ —actually there are two dia-

metric contact points for reasons of central symmetry— then the image of c′
1
,

under homology f , is an ellipse c1 which should be tangent internally to the

circle c. Therefore, it is enough to show that the major semi–axis α1 of ellipse

c1 equals to circle’s radius, i.e. α1 = β, since this is the only case where an

ellipse, inner to a concentric circle, may be tangent to that circle; see Fig. 5.

4D. Rytz., Professor at Aarau (1801–1868)
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FIGURE 4. Visualization of Lemma 2.1.

FIGURE 5. The homologue ellipse c1 of c′
1
.

a. Let ω :=](OA,OL′)∈ (0, π/2). The absolute invariant λ of the homol-

ogy f (depicted in Fig. 6) is given by

(1) λ :=
|OA′|
|OA|

=
α

β
.

FIGURE 6. The homology f between c′ and c.

Thus, for the pair of points (H′, H), where H ≡ L′ in homology f , it

holds that |PH′|/|PH| =α/β, i.e.

|PH′| = |PH|
α

β
=β

α

β
cosω=αcosω.
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We then obtain

|PH| = βcosω,(2a)

|OP| = βsinω,(2b)

|PH′| = αcosω.(2c)

b. We let, for our convenience in the process of the solution, E′ ≡ D′.
Since (OD′,OL′) is a pair of conjugate semi–diameters of ellipse c′1,

which corresponds, under homology f , to pair (OD,OL) which is a

pair of conjugate semi–diameters of ellipse c1, we consider the follow-

ing:

b1. Calculation of the c1’s requested lengths of OD and OL (Fig. 7).

For point D of the pair (D′,D) and for the invariant λ of the ho-

mology f it holds that

(3)
|OD′|
|OD|

=
α

β
, i.e. |OD| =

βγ

α
.

FIGURE 7. The determination of points D and L as homo-

logue points (through f ) of D′ and L′.

Similarly for point L, the relations (2a)–(2c) yield |PL′|/|PL| =
α/β, i.e.

(4) |PL| = |PL′|
β

α
=

β2

α
cosω.

From the orthogonal triangle (OPL) and relation (4) we have

|OL|2 = |OP|2 +|PL|2 =β2 sin2ω+
(

β2

α
cosω

)2

=β2

(

sin2ω+
β2

α2
cos2ω

)

=
β2

α2

(

α2 sin2ω+β2 cos2ω
)

,

and thus

(5) |OL| =
β

α

p
k,

where k :=α2 sin2ω+β2 cos2ω.
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b2. Calculation of the angle ϕ :=](OD,OL)∈(0, π/2). Relations (2a)–

(2c) and (5) imply that

(6) sinϕ=
|OP|
|OL|

=
βsinω

β
p

k
α

=
α
p

k
sinω,

and finally

(7) sinϕ=
α
p

k
sinω.

b3. Calculation of the c1’s major semi–axes length. Let α1 and β1

being the lengths of the c1’s major and minor semi–axis respec-

tively. Setting ν := |OD| and µ := |OL|, relations (3) and (5) can be

written as

(8) ν=
βγ

α
and µ=

β

α

p
k.

Recall the Apollonius relations, stating that: If (µ,ν) is an arbi-

trary pair of conjugate semi–diameters of an ellipse which form

an angle ϕ∈ (0, π/2) with each other, then for ellipse’s major and

minor radius 0<β1 <α1, it holds that

µ2+ν2 = α2
1 +β2

1 and(9a)

µνsinϕ = α1β1.(9b)

For further reading see [6] or [3, pg. 178]. Solving the equations

(9a) and (9b) with respect to the major semi–axes α1 we obtain

that

(10) α2
1 =

1
2

(

µ2 +ν2
)

+ 1
2

√

(

µ2+ν2
)2−4µ2ν2 sin2ϕ,

where always µ2 +ν2 ≥ 2µνsinϕ, and by substitution of µ, ν and

sinϕ as in (8) and (7), the above relation (10) is then of the form

(11) α2
1 =

1
2

(

β
α

)2
[

k+γ2 +
√

(

k+γ2
)2 −4α2γ2 sin2ω

]

.

Taking into account the ellipse’s known relation γ2 =α2−β2, and

the fact that k := α2 sin2ω+β2 cos2ω, the expression (11) finally

yields that

(12) α2
1 =

1
2

(

β
α

)2
(

2α2
)

=β2.

As the ellipse c1, which is homologue to the ellipse c′
1
, adopts

β = α1 as its major semi–axis, it is therefore a concentric inner

tangent ellipse to the circle c; see Fig. 8.

In order to determine the tangent points A′
1

and A′
2

of ellipses c′
1

and c′, we

first determine the homologue points A1 and A2 respectively. Utilizing the

Rytz construction, the principal axis of ellipse c1 are determined; see Fig. 9.

The vertices A1 and A2 of c1, lying on the edges of its major axis of length

2α1 = 2β, are the requested contact points of the ellipse c1 and the circle c.

Therefore, the ellipse c′1, homologue to c1 through f , is a (concentric) tangent

ellipse to the given c′, homologue to the circle c, and inscribed to c′. The cor-

responding c′’s homologue points A′
1 and A′

2 of points A1 and A2 respectively,
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FIGURE 8. The c1’s major semi–axes length α1 =β.

FIGURE 9. The principal axes of the ellipse c1.

are the requested contact points between c′1 and c′. In these points the com-

mon tangent lines are homologue to the corresponding tangent lines at the

vertices A1 and A2 of the ellipse c1. The tangent lines at points A1 and A2 of

c1 are perpendicular to major axis A1A2.

Remark 2.1. Summarizing the above, we can rewrite Lemma 2.1 as follows:

Let circle c(O,OB), a point E′ lying on the plane of c and L′ any point of

circle c. Then, the ellipse c′1, which is defined by the pair of conjugate semi–

diameters (OE′,OL′) (see Fig. 4), is tangent to another ellipse c′, which is

tangent to given circle c. Ellipse c′ has focal point E′ and secondary circle the

c.

The following Lemma 2.2 is a generalization and, at the same time, an

application of Lemma 2.1.
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Lemma 2.2. Let c be an ellipse with principal axes OA and OB of length α

and β respectively, 0 < β < α. Let S be an arbitrary point lying on the plane

of c, and H any point of c. Then, the ellipse t which is defined by the pair of

conjugate semi–diameters (OS,OH), see Fig. 10, is tangent to another ellipse

k at points L1 and L2 (Fig. 11), with ellipse k is being tangent to given ellipse

c at the edge points of a common diameter M1M2. Moreover, the conjugate

semi–diameter ON of M1M2 lies on the line spanned by OS.

FIGURE 10. The ellipse t defined by its conjugate semi–

diameters (OS,OH).

FIGURE 11. The ellipse k tangent to t at their contact point

L1 and L2.

Proof.Let c′(O,β = |OB|) be the secondary circle of given ellipse c (Fig. 12).

The orthogonal homology f transforming c to c′ is defined with axis OB and

a pair of corresponding points (A, A′). Let S′ and H′ be the corresponding

points, under f , of S and H; see Fig. 12.

We construct an ellipse t′ defined by the pair of conjugate semi–diameters

(OS′,OH′); see Fig. 13. Obviously, t′ is the homologue ellipse of t, which

is defined by the pair of conjugate semi–diameters (OS,OH); see Fig. 10.

Therefore, we are reduced to Lemma 2.1, and especially to Remark 2.1. In our

case, of lemma 2.2, instead of the circle c we consider now circle c′(O,β= |OB|)
and instead of point E′ we consider point S′. Thus, Lemma 2.2 becomes an

application of Lemma 2.1, or its rewritten form as described in Remark 2.1.

Due to the above discussion, we can define the requested ellipse k according

to the following steps (Fig. 14):

a. We consider the diameter M′
1M′

2 of the circle (O,β= |OB|) perpendic-

ular to OS′.
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FIGURE 12. The homologue points S′ and H′ of the S and H

(through f ).

FIGURE 13. The ellipse t′ defined by the pair of its conjugate

semi–diameters (OS′,OH′).

FIGURE 14. Application of Lemma 2.1 with circle c′ and

given point S′.

b. The ellipse k′ is defined having M′
1M′

2 as its minor axis and S′ as

one of its focal points and the length |M′
2S′| of its major semi–axis is

defined by the well known relation

(13) |OM′
2|

2 +|OS′|2 = |M′
2S′|2.
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c. We let M′
2S′ = ON ′, where ON ′ is being the major semi–axis of the

ellipse k′, which is tangent to all corresponding ellipses t′ formed as

point H′ travels over the circle c′. Therefore, as the circle c′ is an

homologue of the given ellipse c (through f ), the requested ellipse

k is also an homologue of k′ (through the same homology f ). It is

then sufficient to determine the homologue of points N and M2 of

the k’s vertices N ′ and M′
2

respectively, which in turn define a pair

(ON,OM2) of conjugate semi–diameters of the requested ellipse k. It

is clear that M2 is on the given ellipse c, while N lies on the line

spanned by OS. Moreover, if OS intersects the ellipse c at point, say

W, the homologue OS′ also intersects the homologue circle c′ at point

W ′; see Fig. 14.

d. We can then prove that

(14) |OS|2 +|OW|2 = |ON|2.

With the help of (14), we can easily determine the requested ellipse

k. Note that the relation (14) was also proved in [5, pg. 245] with

the help of a parallel projection of an appropriate sphere onto a plane.

Indeed: Relation (13) can be written as

(15) |OW ′|2 +|OS′|2 = |ON|2,

while

(16)
|OW ′|
|OW|

=
|OS′|
|OS|

=
|ON ′|
|ON|

:= h.

Thus,

(17) |OW ′| = h|OW|, |OS′| = h|OS| and |ON ′| = h|ON|.

From (15)–(17) we derive the requested relation (14), which have now

proved without the use of projections in a three–dimensional Euclidean

space.

In Fig. 15, the pair of the semi–diameters (ON,OM2) yields, through the

corresponding Rytz construction, the principal axes P1P2 and R1R2 of the

requested ellipse k. Since the ellipse k′ and the circle c′ are tangent to each

other on the c′’s diametrical points M′
1 and M′

2, their two common tangent

lines m′
1 and m′

2 at these points respectively, are then also having two com-

mon tangent lines m1 and m2 of the homologue k and c at their points M1

and M2 respectively. Moreover, as the tangent lines m′
1

and m′
2

are perpen-

dicular to the c′’s diameter M′
1
M′

2
, and hence parallel to ON ′, we conclude

that the homologue tangent lines m1 and m2 of the tangent lines m′
1

and m′
2

are also parallel to the line spanned by OS.

Figure 16 presents only the necessary elements that contribute to the bet-

ter understanding of the previous discussion. Moreover, we point out here

that, with the help of (14), we can easily determine the requested ellipse k

from points N and M2 (as we already have mentioned above), i.e. from the

pair of its conjugate semi–diameters (ON,OM2). Indeed, from the orthogonal

triangle that is derived through (14), we construct ON dy defining a semi–

diameter ON of the requested ellipse k onto OS; see Fig. 16. The parallel to

OS tangent lines m1 and m2 of the given ellipse c determine the requested
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FIGURE 15. The construction of the ellipse k through its

semi–diameters’ pair (ON,OM2).

two common contact points M1 and M2 between c and k, and hence the re-

quested conjugate semi–diameter (ON,OM1) of ON.

FIGURE 16. The construction of the ellipse k.

In the following steps we determine the contact points L1 and L2 as well

as the corresponding tangent lines l1 and l2 between the ellipse t and its

enveloping ellipse k; see Fig. 17.

a. Consider the principal axes P1P2 and R1R2 of the ellipse k as well as

the secondary circle k′′(O, |OR1|). Let f1 be the orthogonal homology

between the ellipses k and k′′, with homology axis spanned by R1R2

which transforms point P1 to P ′′
1
. Let also t′′ be the homologue of the

“variable” ellipse t.

b. For the determination of ellipse t′′ we find a pair of its conjugate semi–

diameters. Because the homologue t of t′′ has a pair of conjugate

semi–diameters (OS,OH), the homologue pair (OS′′,OH′′) is also a

pair conjugate semi–diameters of t′′. On Fig. 17 points S′′ and H′′

have been defined through homology f1. With the Rytz construction

we determine the principal axis of t′′. From these principal axis the

major one is L′′
1L′′

2. Thus, t′′ is tangent to k′′ at points L′′
1 and L′′

2, while
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FIGURE 17. The construction of the he contact points L1 and

L2 as well as the corresponding tangent lines l1 and l2 be-

tween the tangent ellipses t and k.

the homologue L1 and L2 of these points are the requested contact

points between ellipses k and t.

c. The two common tangent lines l1 and l2 of the ellipse t and k are

then the homologue of the common tangent lines l′′1 and l′′2 between

the circle k′′ and the ellipse t′′ at their contact points L′′
1

and L′′
2
.

The proof of Lemma is now complete.

Remark 2.2. Both Lemmas 2.1 and 2.2 can be rewritten as a single Theorem

as follows: “Let c be an ellipse with principal axes OA and OB of length α

and β respectively, 0 < β< α. Let S be an arbitrary point lying on the plane

of c, and H any point of c. Then, the ellipse t which is defined by the pair of

conjugate semi–diameters (OS,OH) is tangent to another ellipse k, which is

tangent to the given ellipse c (see Lemma 2.2)”. The above holds also for the

special case where ellipse c is reduced to a circle (see Remark 2.1). Because of

the method followed for the proof of both Lemmas, it was essential the special

case of the circle to be proved first and then followed by the proof of the ellipse’s

general case, as the special case was required in the course of the proof of the

general case.

3. THE FOUR ELLIPSES THEOREM

The main result of this study, addressing the Four Ellipses Problem, is

derived in this Section with a Theorem, which shall be referred as the “Four

Ellipses” Theorem.

Main Theorem 3.1 (The Four Ellipses Theorem). Consider three arbitrary

given coplanar line segments OA, OB and OC (non–degenerated), where only

two of them can lie on the same line. Each one of the pairs (OB,OC), (OC,OA)

and (OA,OB), is considered to be a pair of conjugate semi–diameters which

define the concentric ellipses c1, c2 and c3 respectively. Then, there always ex-

ists an ellipse p, concentric to c i, i = 1,2,3, which circumscribes all c i ellipses,
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i.e. being tangent at two points with each one of them. Moreover, if 0 < β < α

being the length of the p’s principal semi–axes, it holds that

(18) |OA|2 +|OB|2 +|OC|2 =α2 +β2.

Proof.The Four Ellipses Theorem can be proven through the use of Lemma 2.2.

We first consider one of the three ellipses, say c3, defined by the pair of con-

jugate semi–diameters (OA,OB); see Fig. 18.

FIGURE 18. The ellipse c3 defined by the pair of its two con-

jugate semi–diameters (OA,OB).

Since points A and B belong to the ellipse c3, applying Lemma 2.2, the

concentric ellipses c1 and c2 are the tangent ellipses of an ellipse p, which is

also tangent to the ellipse c3; see Fig. 19. Therefore, p is a tangent ellipse to

all c i, i = 1,2,3.

FIGURE 19. The ellipse p being tangent to all c i, i = 1,2,3.

Specifically, following Lemma 2.2, we let W be the intersection point be-

tween the ellipse c3, defined by the pair (OA,OB), and the line on which the

third given segment OC lies. From the tangent lines m1 and m2 of the el-

lipse c3 at points M1 and M2, which are parallel to OC, we can determine

the conjugate to OW diameter M1M2 of c3. An orthogonal triangle COW can

then be constructed having as orthogonal sides the given segments OC and

OW, while |ON| = |CW|l see also Fig. 16. We place ON onto the line spanned

by OC and we construct the requested ellipse p having as pair of conjugate
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semi–diameters the pair (ON,OM1). The ellipses p and c3 are clearly tan-

gent to each other at the edge points of their common diameter M1M2.

As far as the interesting property (18) is concerned, we consider the follow-

ing: Recall the first Apollonius relation (9a) in Lemma 2.1, i.e.

(19) µ2+ν2 =α2
1 +β2

1 = const.,

where (µ,ν) are being the lengths of any pair of conjugate semi–diameters of a

given ellipse, while α1 and β1 are correspond to the ellipse’s principal semi–

axes. Therefore, for the ellipse c3 and for the two given pairs of conjugate

semi–diameters (OA,OB) and (OW,OM1) it holds that

(20) |OA|2 +|OB|2 = |OW|2 +|OM1|2.

From the orthogonal triangle COW, as constructed above in Fig. 19 through

the application of the relation (14) in Lemma 2.2, we obtain that

(21) |OC|2 +|OW|2 = |ON|2.

Moreover, for the pair (OM1,ON) of the conjugate semi–diameters of the el-

lipse p, it holds that

(22) |OM1|2 +|ON|2 =α2 +β2.

Adding the relations (20) and (21) and then substituting (22) we finally derive

the requested property (18), and hence the Four Ellipses Theorem has been

proved.

DISCUSSION

Consider the problem of determining the concentric ellipse p which cir-

cumscribes three coplanar and concentric ellipses, say c i, i = 1,2,3. Each one

of the ellipses c i is defined by two line segments, which correspond to the

ellipse’s two conjugate semi–diameters, taken from a bundle of three given

line segments on a plane e (assumed that only two of them may coincide).

The above problem was addressed be G. A. Peschka as a part of his elemen-

tary proof of Pohlke’s Fundamental Theorem of Axonometry; see [4, 5, 7].

Although the problem of determining ellipse p is a plane–geometric problem

(referred by the authors as the “Four Ellipses” problem), Peschka proved it

with the help of a parallel projection of an appropriate sphere onto the c i’s

common plane e, which requires the use of a three–dimensional space.

In particular, the ellipses c i, i = 1,2,3, are the parallel projections of three

great circles of an appropriate sphere S onto plane e, which lies in the am-

bient three–dimensional space where plane e belongs. The S’s three great

circles are the intersections of the sphere S with three planes which are per-

pendicular to each other. Each pair of planes define a diameter of the sphere

S. The projection of the three radii, one for each diameter, yields three line

segments on plane e, which forms three pairs of conjugate diameters, defining

the three given ellipses c i on plane e.

In the present paper, the Four Ellipses problem was investigated in terms

of plane Projective Geometry, and not through the use of the Euclidean three–

dimensional space (required for the sphere’s parallel projection). Specifically,

the problem was addressed through the “Four Ellipses” Theorem, presented

in Section 3, where the existence of the circumscribing ellipse p was proved.
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Moreover, the sum of the squares of the three given line segments (which

define the three ellipses c i, i = 1,2,3) was found to be equal to the sum

of squares of the semi–axes of their circumscribed ellipse p. The provided

figures illustrated the corresponding geometric constructions of the proofing

process.
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