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PORISTIC TRIANGLES OF THE ARBELOS

Antonio Gutierrez, Hiroshi Okumura and Hussein Tahir

Abstract. The arbelos is associated with poristic triangles whose circum-
circle is the outer circle forming the arbelos. The triangles give infinitely
many sextuplets of Archimedean circles and their intouch triangles share
the same nine-point circle, which is also Archimedean and has center on the
Schoch line.

1. Introduction

An arbelos is one of the two congruent areas surrounded by three mutually
touching circles with collinear centers in the plane in a restricted sense.
Circles having common radius equal to the half the harmonic mean of the
radii of the two inner circles are said to be Archimedean, which are one of
the main topics on the arbelos.

In this article, we show that the arbelos can naturally be associated with
a set of poristic triangles, whose circumcircle is the outer circle forming
the arbelos. The triangles give two families of infinitely many sextuplets of
Archimedean circles. The intouch triangles of the poristic triangles share
the same nine-point circle, which is also Archimedean and has center at the
point of intersection of the Schoch line and the line passing through the
centers of the circles forming the arbelos. Some special cases are considered.

2. Base triangle of the arbelos

In this section we construct a special triangle of the arbelos. For two
points P and Q, P (Q) denotes the circle with center P passing through Q,
and (PQ) denotes the circle with a diameter PQ. The center of a circle δ is
denoted by Oδ.

Let O be a point on the segment AB, and let α = (AO), β = (BO) and
γ = (AB). The configuration of the three circles is denoted by (α, β, γ) and
called an arbelos. Let a = |AO|/2 and b = |BO|/2. Circles of radius ab/(a+
b) are called Archimedean circles of (α, β, γ), or said to be Archimedean with
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respect to (α, β, γ), and the common radius is denoted by rA. We use a
rectangular coordinate system with origin O such that the points A and B
have coordinates (2a, 0) and (−2b, 0) respectively. The radical axis of α and
β is called the axis of the arbelos, which overlaps with the y-axis. The point
of intersection of the axis and γ lying in the region y > 0 is denote by I.

It has coordinates
(
0, 2

√
ab
)
. The external common tangent of α and β

touching the two circles in the region y < 0 is expressed by the equation [8]:

(1) (a− b)x+ 2
√
aby + 2ab = 0.

I

J

K

AB O

Figure 1.

Let J and K be the points of intersection of γ and this tangent, where
J is closer to B than K (see Figure 1). We call IJK the base triangle of
(α, β, γ). Let g = a + b, u = a − b, w = a2 + b2 and v =

√
w + ab. The

points J and K have coordinates(
2rA(u− 2v)

g
,−2

√
ab(w − uv)

g2

)
and

(
2rA(u+ 2v)

g
,−2

√
ab(w + uv)

g2

)
,

respectively. Therefore the lines IJ and KI are expressed by the equations

(2) vx−
√
aby + 2ab = 0 and − vx−

√
aby + 2ab = 0,

respectively. The equations show that the lines IJ and KI are symmetric in
the axis. They also show that each of the distances from O to IJ and from
O to KI is 2ab/

√
v2 + ab = 2rA. On the other hand, the distance between

O and JK also equals 2rA [2], which is also obtained from (1). Therefore
we get:

Theorem 2.1. The base triangle IJK has incircle of radius 2rA with center
O.

3. Poristic triangles of the arbelos

Let ζ be the incircle of the triangle IJK. Since IJK has circumcircle
γ and incircle ζ, there is a continuous family of triangles with the same
circumcircle and incircle by the Poncelet closure theorem. We call the tri-
angles the poristic triangles of (α, β, γ). In this section we show that each of
the poristic triangles of (α, β, γ) gives several Archimedean circles and the
intouch triangles of the poristic triangles share the same nine-point circle.
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Let EFG be a poristic triangle of (α, β, γ), and let E′F ′G′ be its intouch
triangle, where E′, F ′ and G′ lie on the segments FG, GE and EF , respec-
tively (see Figure 2). Let Em be the midpoint of EO. The points Fm and
Gm are defined similarly.

Theorem 3.1. The following statements hold.
(i) The circles (EO) and (FO) share the chord G′O, and the circle (G′O) is
Archimedean and is the inverse of the line EF in the circle ζ for the points
E, F and G′. Similar facts are true for the points E′, F and G and for E,
F ′ and G.
(ii) The circle with center Em touching the sides GE and EF is Archimedean.
Similar facts are true for the points Fm and Gm and the corresponding sides
of the triangle EFG.
(iii) The points Em, Fm and Gm lie on the circle (OαOβ).

Proof. The part (i) is obvious. The homothety with center E and ratio 1/2
carries the circle ζ and the point O into the Archimedean circle touching EF
and GE and the point Em, respectively. This proves (ii). The homothety
with center O and ratio 1/2 carries γ and E into the circle (OαOβ) and Em.
This proves (iii).
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Figure 2.

We get a sextuplet of Archimedean circles from a poristic triangle of
(α, β, γ) by the theorem. Therefore we get infinitely many sextuplets of
Archimedean circles. For a triangle ∆ with inradius 2r, we can construct
an arbelos with Archimedean circles of radius r and a poristic triangle ∆.

Corollary 3.2. For a triangle ∆ with inradius 2r and incenter O′, let γ′

be the circumcircle of ∆. If the line O′Oγ′ intersects γ′ at points A′ and
B′, let α = (A′O′) and β′ = (B′O′). Then (α′, β′, γ′) is an arbelos with
Archimedean circles of radius r and a poristic triangle ∆.

Let s = −rAu/g. The line expressed by the equation x = s is called the
Schoch line of (α, β, γ) [9]. Let E′′ be the point of intersection of (F ′O) and
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(G′O) different from O. The points F ′′ and G′′ are defined similarly. Let
ε be the circle passing through E′′, F ′′ and G′′ (see Figure 3). Then ε is
Archimedean with respect to (α, β, γ) [4].

Theorem 3.3. The following statements are true.
(i) The point E′′ is the midpoint of F ′G′ and lies on the segment EO. Similar
facts are true for the points F ′′ and G′′.
(ii) The circle ε is the inverse of γ in the circle ζ and is the nine-point
circle of the triangle E′G′F ′. The center of ε coincides with the point of
intersection of the Schoch line and AB.

Proof. The line F ′G′ is the inverse of the circle (EO) in ζ, and EG′OF ′

is a kite. Hence E′′ is the midpoint of F ′G′. This proves (i). Since E′′ is
the inverse of E in ζ and similar facts are true for F and F ′′ and for G and
G′′, the circle ε is the inverse of γ in ζ. The inverses of A and B in ζ are
the endpoints of a diameter of ε and have x-coordinates 2r2A/a and −2r2A/b.
Hence the center of ε has x-coordinate r2A/a − r2A/b = s. The rest of (ii) is
obvious.

Corollary 3.4. The intouch triangles of the poristic triangles of (α, β, γ)
share the same Archimedean nine-point circle ε. In general, the intouch
triangles of the poristic triangles with the same circumcircle and incircle of
a triangle share the same nine-point circle.
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Figure 3.

The theorem creates a new aspect of the Schoch line: it is the perpendic-
ular to AB passing through the center of the inverse of γ in ζ. If n = −rA/g,
then ε coincides with the circle with center on the Schoch line and touching
the two circles with centers (na, 0) and (nb, 0) passing through O internally
[9].

Let V (resp. W ) be the external center of similitude of the circles ε and
α (resp. β). Then the circle (OV ) is Archimedean (see Figure 3). For V
has coordinates ((−rAa + as)/(a − rA), 0) = (−2rA, 0). Similarly (WO) is
Archimedean. The circle (WO) (resp. (V O)) is known as an Archimedean
circle touching the axis from the side opposite to B (resp. A) and the
tangents from A to β (resp. B to α), and is denoted by W6 (resp. W7) in



Poristic triangles of the arbelos 31

[2]. Therefore the fact creates a new aspect of the Archimedean circles W6

and W7.

4. An arbelos derived from Dao’s result

From the arbelos (α, β, γ) we can construct another arbelos, which shares
Archimedean circles with (α, β, γ). Suppose that the external common tan-
gent of α and β touching the two circles in the region y > 0 intersects γ
at points S and T (see Figure 4). Let U be the point of intersection of the
tangents of γ at S and T . Then OγSUT is a kite. Hence the circle (OγU)
passes through the points S and T . On the other hand, Dao Thanh Oai
has shown that each of the distances from the point I to the two tangents
equals 2rA [1]. While the distance between I and the line ST is also 2rA
[7]. Hence the triangle STU has incircle of radius 2rA with center I. There-
fore if α′ = (OγI), β

′ = (UI) and γ′ = (OγU), then the arbelos (α′, β′, γ′)
shares Archimedean circles with (α, β, γ), and STU is a poristic triangle of
(α′, β′, γ′) by Corollary 3.2. The axis of (α′, β′, γ′) is the tangent of γ at the
point I, which is parallel to ST [7]. Let a′ and b′ be the radii of the circles α′

and β′, respectively. Then a′ = g/2. Solving the equation a′b′/(a′+ b′) = rA
for b′, we get b′ = abg/w. Therefore γ′ has radius g3/(2w).
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Figure 4.

5. Another infinitely many sextuplets of Archimedean
circles

We consider another infinitely many sextuplets of Archimedean circles of
(α, β, γ), which are obtained from the following simple fact (see Figure 5):

Proposition 5.1. If D is a point lying outside a circle C and M is a point
lying on one of the tangents of C from D, then the distance between M and
the line DOC equals the radius of C if and only if M lies on the circle D(OC).

Proof. If N is the foot of perpendicular from OC to DM , and H is the foot
of perpendicular from M to DOC , then the triangles DHM and DNOC are
similar. Hence |MH| = |OCN | and |DM | = |DOC | are equivalent.
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Figure 5.

If each of the lines EF , FG and GE intersects AB, we denote the point
of intersections by Ug, Ue and Uf , respectively for a poristic triangle EFG
of (α, β, γ). If EF and AB are not parallel, let δg = Ug(O). If EF and AB
are parallel, let δg be the axis of (α, β, γ). Similarly δe and δf are defined.
By Proposition 5.1, we get the following theorem.

Theorem 5.2. The smallest circles touching AB and passing through one
of the points of intersection of EF and δg are Archimedean for a poristic
triangle EFG of (α, β, γ). Similar facts are true for FG and δe and for GE
and δf .

A poristic triangle of (α, β, γ) gives six Archimedean circles in general by
Theorem 5.2. Therefore we also get infinitely many sextuplets of Archimedean
circles. Figure 6 shows the sextuplet of Archimedean circles in the case in
which the poristic triangle is the base triangle.
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Figure 6.

6. Some special cases

In this section we consider some special cases in which EFG is a special
poristic triangle of (α, β, γ). At the beginning, we consider the case the lines
AB and FG being parallel (see Figure 7). If a ̸= b, let δ = δe in the case
E = I (see Figure 6). The circle δ is expressed by the equation (x+2ab/u)2+
y2 = (2ab/u)2. If a = b, we define δ as the axis. In any case the points

of intersection of δ and ζ have coordinates
(
s,±rA

√
(3a+ b)(a+ 3b)/g

)
.

Hence they lie on the Schoch line and also on the circle (OαOβ) [6]. Let
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Q be the point of intersection of δ and γ lying in the region y > 0. Its
coordinates are [5]:

(3)

(
−2abu

w
,
2abg

w

)
.

Let t =
√
w(w + 4ab). The points of intersection of γ and the line y = −2rA

have coordinates

(4) (u± t/g,−2rA) .
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Figure 7.

Theorem 6.1. The following statements are equivalent for a poristic trian-
gle EFG of (α, β, γ).
(i) The lines FG and AB are parallel.
(ii) The point E coincides with the point Q or its reflection in AB.
(iii) |FUg| = |OUg| holds. (iv) |GUf | = |OUf | holds.
(v) The foot of perpendicular from E′′ to AB coincides with the point Oε.

Proof. Let us assume (i). We may assume FG lies in the region y < 0
and F has coordinates (u− t/g,−2rA) by (4). Then FQ is expressed by the
equation

2v2x+
ug3 − wt

2ab
y + gt− uw = 0.

The distance between FQ and O equals 2rA, because we have

(gt− uw)2

((2v2)2 + ((ug3 − wt)/(2ab))2
= 4r2A.

Hence the line FQ touches ζ. Therefore QFG is a poristic triangle of
(α, β, γ), i.e., E = Q. Therefore (i) implies (ii). Since E 7−→ FG is one-to-
one correspondence, the converse holds. The part (i) is equivalent to that the
distance between F and AB is 2rA. This happens only when |FUg| = |OUg|
by Proposition 5.1. Hence (i) and (iii) are equivalent. Also (i) and (iv)
are equivalent. Let D be one of the farthest points on ε from AB. The
slope of the line OQ equals −g/u by (3). Also the slope of the line OD
equals ±rA/(−rAu/g) = ∓g/u. Since E′′ lies on ε and EO, (ii) holds if and
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only if E′′ coincides with D or its reflection in AB. Hence (ii) and (v) are
equivalent.

If FG and AB are parallel, the point of intersection of δ and one of the
external common tangents of α and β lies on FG by Proposition 5.1.

Let us assume that E and G are the points of intersection of the circles γ
and A(O), where E lies in the region y > 0 (see Figure 8). Then EG and the
axis are parallel and their distance equals 2rA [2], and the triangle EFG is
an isosceles triangle, and F coincides with B. In this case the points E′ and
G′ are the points of intersection of the circles β and ζ [9], where the circle
(G′O) is denoted by A(2) in [9]. The distance between the axis and each of
the points of intersection of α and (OαOβ) is rA [3]. While the points Em

and Gm lies on (OαOβ) by (iii) of Theorem 3.1, and their distance from the
axis also equals rA. Therefore Em and Gm are the points of intersections
of α and (OαOβ). The arbelos (α′, β′, γ′) in Figure 4 is an example of this
case.

If a = b, then rA = a/2. In this case any poristic triangle EFG of (α, β, γ)
is equilateral and the circles ζ and (OαOβ) coincide (see Figure 9). Also the
circle ε touches the Archimedean circles with centers Em at the point E′′.
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