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THE ERDÖS - MORDELL THEOREM

IN THE EXTERIOR DOMAIN

PETER WALKER

Abstract. We show that in the Erd½os-Mordell theorem, the part of the
region in which the inequality holds, and which lies outside the triangle,
is bounded if and only if the sum of the sines of the two smaller angles is
strictly greater than 3/2.

1. Introduction and Examples

The Erd½os-Mordell theorem states that if P is an interior or boundary
point of the triangle ABC; and X;Y; Z are the feet of the altitudes from P
to the sides BC;CA;AB (produced if necessary), then

(1) PA+ PB + PC � 2 (PX + PY + PZ) :

There is equality here if and only if the triangle is equilateral and P is
its centre. For short, elegant proofs see [1], [2].
For points outside the triangle, the question of the signs of the lengths

of the altitudes PX etc. becomes relevant. More precisely, if we take the
sign of PX as positive when P is on the same side of BC as the vertex
A; otherwise negative, and similarly for the other altitudes, then an ex-
tension of (1) is valid for all points in the plane. [B. Male�evíc et. al.,
arxiv.org/ftp/arxiv/papers/1204.1003.pdf].
In this paper we consider instead the situation in which we use the ab-

solute distance for the altitudes, that is the lengths PX etc. are consid-
ered positive in all cases. These are the metrical trilinear coordinates, see
Somerville, Analytical Conics, page 157 [ia700705.us.archive.org/16/items/
AnalyticalConics/Somerville-AnalyticalConics.pdf].
Since the inequality is strict on the boundary of the triangle, there must be

some closed set T say, containing the boundary of the triangle in its interior,
on which the inequality remains true, and a complementary open set F say,
on which it fails. Our main aim is to to investigate the boundedness or
otherwise of the set T ; theorem 3.1 below gives a necessary and su¢ cient
condition.
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We begin by looking at the natural special cases of equilateral and of
isosceles right-angled triangles. Consider �rst an equilateral triangle ABC
of side 1 and consider what happens when P is on BC produced, at a
distance x from C: The altitudes from P to BC; CA; AB have lengths 0;
x
p
3=2 and (x+ 1)

p
3=2 respectively, while the distances from P to the

vertices A;B;C are
p
x2 + x+ 1; x+1 and x respectively (the �rst from the

cosine rule since cos 120� = �1=2):
Hence the inequality to be satis�ed isp

x2 + x+ 1 + 2x+ 1 � 2 (2x+ 1)
p
3=2; orp

x2 + x+ 1 � (2x+ 1)
�p
3� 1

�
:

Substituting y = x+ 1=2 we easily get

x �
s

3

4
�
15� 8

p
3
� � 1

2
= 0:30983::

is required for P to be in T ; beyond this P is in F: The same result is of
course valid by symmetry on all other sides, making us surmise that T is
bounded in this case, and we shall see later that this is true.

Figure 1

Now consider an isosceles right-angled triangle with the right angle at A
and sides 1; 1;

p
2: Let P be a point on AB produced at a distance y from

B: The altitudes from P to BC; CA; AB have lengths respectively y=
p
2,

y + 1; 0 respectively, while the distances from P to the vertices A;B;C are
y+1; y and

p
y2 + 2y + 2; respectively (the latter from the cosine rule with
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cos 135� = �1=
p
2): Hence the inequality to be satis�ed isp

y2 + 2y + 2 + 2y + 1 � 2
��
1 + 1=

p
2
�
y + 1

�
; orp

y2 + 2y + 2 �
p
2y + 1:

From this we �nd

y �
q
4� 2

p
2� 2

p
2 + 1 = 0:68817:::

is required for P to be in T ; beyond this P is in F:
A similar calculation in which P lies on BA produced at a distance z from

A shows that z � 2 �
p
2 = 0:58578::: is required for P to be in T; beyond

this P is in F:
Suppose �nally that P is on the hypotenuse BC produced at a distance

t from C: The altitudes from P to BC; CA; AB have lengths respectively
0,t=

p
2;
�
t+

p
2
�
=
p
2 respectively, while the distances from P to the vertices

A;B;C are
p
t2 +

p
2t+ 1; t+

p
2; and t; respectively. Hence the inequality

to be satis�ed isq
t2 +

p
2t+ 1 + 2t+

p
2 � 2

�p
2t+ 1

�
; orq

t2 +
p
2t+ 1 �

�p
2� 1

��
2t+

p
2
�
:

Solving this gives the requirement that P should be in T to be�
8
p
2� 11

��
t2 +

p
2t
�
+
�
4
p
2� 5

�
� 0:

But 8
p
2� 11 and 4

p
2� 5 are both positive so this condition is satis�ed for

all t � 0 and so T contains the whole of the side BC extended to in�nity.

Figure 2
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These examples show that T may be bounded or unbounded; the remain-
der of this paper investigates when these cases occur.

2. Behaviour at Infinity

Consider what happens as P ! 1 in a given �xed direction. This is
equivalent to �xing P and considering the special case in which the tri-
angle shrinks to a point while the sides maintain �xed directions. More
precisely, suppose that our triangle ABC is positively oriented with the ver-
tices labelled so that the angles �; �;  at A;B;C are in decreasing order of
magnitude, or equivalently the lengths of the sides, or sines of the angles are
in decreasing order. (This equivalemce is trivial by the sine rule except when
� > 90� when it follows from the cosine rule!) Now �x a line l; extended to
in�nity in both directions, inclined at an angle � anticlockwise to the side
AB: (It turns out that the exact point at which l intersects AB is irrelevant.)
Then, as already noted, instead of thinking of the point P going to in�nity
along l, we may regard P as �xed while the triangle shrinks to a single point
D say, which also lies on l: Note that the sides of the triangle are inclined at
angles �; ; � in anticlockwise order around D: Hence PA+ PB + PC will
become 3PD while PX;PY; PZ will become PD jsin (� + �)j ; PD jsin (�)j ;
PD jsin (�� �)j respectively, the absolute values occurring since all sides are
taken positively.

Lemma 2.1. Let f(�) = jsin (� + �)j+ jsin (�� �)j+ jsin (�)j : Then for a
point P on l su¢ ciently far from the triangle, P will be in T or F according
to whether f (�) < 3=2 or f(�) > 3=2:

Proof. We want

PA+ PB + PC > 2 (PX + PY + PZ) ; or in the limit

3PD > 2 (PD jsin (� + �)j+ PD jsin (�� �)j+ PD jsin (�)j)
from which the result is immediate.
The examples in section 1 verify these conclusions in the special cases

considered there. The case of equality will be investigated in section 3.
Since the graph of jsinj is concave downwards on all intervals of the form

(n�; (n+ 1)�) with local minima at n� at which the derivative is discon-
tinuous, we see that the graph of f has a discontinuous derivative where
� = ��; 0; � and is concave downwards elsewhere. We have f (��) =
sin (�) + sin () ; f (0) = sin (�) + sin (�) ; f (�) = sin (�) + sin () and
since we are assuming � � � �  it follows that f (��) � f (�) � f (0) :
In particular f (��) = sin (�) + sin () is the global minimum of f and the
following result follows at once from Lemma 2.1.

Corollary 2.1. Let P; l be as in Lemma 2.1.
(i) If sin (�) + sin () > 3=2 then a straight line in any direction will

eventually lie in F:
(ii) If sin (�) + sin () < 3=2 then any line parallel to the side BC will

eventually lie in T:

Corollary 2.2. For any triangle, any line parallel to the angle bisector at A
(the largest angle) will eventually lie in F: In particular, F is never empty.
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Proof. We shall show that

(2) f (�=2) = 2 sin (�=2) + jsin (� + �=2)j � 3=2
is impossible. For if (2) holds then sin (�=2) � 3=4 and so �=2 � sin�1 (3=4) =
48:590�; � � 97:181�. Also since � is the largest angle, we have � � 60�;
sin (�=2) � 1=2: In addition � � � so 30� < � + �=2 � 3�=2 � 145:77� <
150� and sin (� + �=2) > 1=2: This contradicts (2) as required.
Note that the property of being bounded in any direction is not su¢ cient

to show that a set is bounded; consider for instance the case of the parabolic
arc given by y = x2. Hence Corollary 2:1(i) does not immediately imply that
T is bounded. To remove this uncertainty we prove

Theorem 2.3. Let � � � �  be the angles of a triangle ABC. Then T is
bounded if sin� + sin  > 3=2:
More explicitly, suppose that sin� + sin  � 3=2 = � > 0. Let E be the

union of 3 circular discs centred at the vertices of the triangle, and of radius
3S=2� where S is the perimeter a+ b+ c. Then T � E:

Proof. Consider points P which lie on a line which passes through A in a
direction between the sides AB and AC: P may lie on either side of A; but
we suppose initially that P is on the same side of A as the side BC: Let Q
be the intersection of PA with BC:
For the distances of P to the vertices we have

PA+ PB + PC < PA+ (PA+AB) + (PA+AC)

< 3PA+ S:

For the altitudes we have

PX + PY + PZ = PQ jsin(� + �)j+ PA jsin(�� �)j+ PA jsin(�)j
> (PA� S) jsin(� + �)j+ PA jsin(�� �)j+ PA jsin(�)j
> PAf (�)� S � PA (3=2 + �)� S

where PQ > PA�S follows since for any triangle the distance from a vertex
to a point on the opposite side is less than the longest side of the triangle
and hence less than S:
Here 2(PA (3=2 + �)� S) > 3PA+ S is true if 2PA� > 3S; and so (1) is

negated for PA > 3S=2�: The argument if P lies on the opposite side of a is
slightly simpler since we need only PQ > PA in this case, and the argument
for other vertices is similar.

3. The Case of Equality

We begin by describing the possible cases in which sin� + sin  = 3=2:
Two particular isosceles cases are of interest. The most obvious case is when
sin� = sin  = 3=4; when sin� = sin(� + ) = 3

p
7=8: We denote these

values by �0; �0; 0 respectively. Numerically �0 = 0 = 48:590
� and �0 =

82:819�: The other case is when  < � = �:We then have sin�+sin  = 3=2
and sin (2�)�sin  = 0: Eliminating sin  results in a fourth degree equation
in sin� :

4 sin4 � � 3 sin2 � � 3 sin� + 9=4 = 0:
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This may be solved either numerically or algebraically, giving � = � =
73:642�; and  = 32:716�: We denote these values by �1; �1; 1 respectively.
This leads to the following

Lemma 3.1. All triangles with � � � �  and sin� + sin  = 3=2 satisfy
0 �  � 1, and each such value of  determines a unique such triangle in
which �0 � � � �1 and �0 � � � �1:

Proof. First observe that  � 30� since if  < 30� then sin  < 1=2 and
sin� > 1: Also both ; � � 90� since only the largest angle � can be > 90�: It
follows that sin�+sin  = 3=2 determines a one-to-one relationship between
� and  and hence each such  determines a unique triangle. Hence in the
following paragraph we may consider �; � as functions of :
To show that the stated restrictions on �; �;  are necessary we begin

from the special case �0; �0; 0 considered above. Since sin� + sin  = 3=2
we have, di¤erentiating with respect to ; �0 cos�+ 0 cos  = 0 and so as 
decreases, � increases. Also �0 = ��0 � 0 = 0 (cos  � cos�) = cos� which
is negative since � �  and so as  decreases, � decreases. This monotonic
dependence continues until � = � and we arrive at the case �1; �1; 1 as
required.
We can now prove our main theorem.

Theorem 3.1. Let � � � �  be the angles of a triangle ABC. Then T is
bounded if and only if sin� + sin  > 3=2:

Proof. We prove that T is unbounded if sin� + sin  = 3=2, the other
possibilities having been dealt with in the previous section. The restrictions
on �; �;  from Lemma 3.1 will be introduced as and when required.
Let P be a point on BC at a distance x (> 0) from C with P and B on

opposite sides of C: Then for PA+PB+PC we have
p
x2 + b2 + 2bx cos +

(x + a)+ x and for PX + PY + PZ we have 0 + x sin  + (x+ a) sin� =
3x=2 + a sin�. Hence for x to be in T we requirep

x2 + b2 + 2bx cos  + 2x+ a � 2 (3x=2 + a sin�) , orp
x2 + b2 + 2bx cos  � x+ a (2 sin� � 1)

where both sides are positive since sin� � 1=2: Hence we may square to
obtain

x2 + b2 + 2bx cos  � x2 + 2ax (2 sin� � 1) + a2 (2 sin� � 1)2

2x (b cos  � a (2 sin� � 1)) � a2 (2 sin� � 1)2 � b2:
Putting a; b; c = 2R(sin�; sin�; sin ), R being the circumradius of the

triangle, and factorising, we get
x

R
(sin� cos  � sin�(2 sin� � 1))

� (sin�(2 sin� � 1)� sin�) (sin�(2 sin� � 1) + sin�) ; or
x

R
(sin�(2 sin� � 1)� sin� cos )(3)

� (sin� � sin�(2 sin� � 1)) (sin� + sin�(2 sin� � 1))
as the condition for x to be in T . On the right here we have two factors, the
second of which is positive by inspection since sin� > 1=2: The �rst may be
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written as

sin� � sin�(2 sin� � 1) = (1� (2 sin� � 1) (2 sin�� 1)) =2

which is positive since both sin�; sin� 2 [1=2; 1):WritingK := sin�(2 sin��
1) � sin� cos  and G for the right hand side of (3) we can write (3) as
xK=R � G where G > 0: Thus if K � 0 then (3) is satis�ed for all x � 0,
while if K > 0 it is satis�ed for all x with xK=R � G; i.e. x 2 T for
x � RG=K but x 2 F for all x > RG=K: Thus we have to determine the
sign of K: Here K > 0 if and only if

sin�(2 sin� � 1) > sin� cos ; or equivalently

(sin� cos  + cos� sin ) (2 sin� � 1) > sin� cos  since sin� = sin (� + ) :

On rearranging we get

cos� sin (2 sin� � 1) > sin� cos  (1� 2 sin� + 1)
= 2 sin� cos  (1� sin�) :(4)

Before launching into the proof of (4) ; notice that both sides are equal when
sin� = sin  = 3=4 so there is some hope that a reasonable simpli�cation
can be found. In particular, if sin� = sin  = 3=4 then K = 0 and the whole
of the side BC produced in both directions lies in T:
Now square (4) (both sides are positive as previously found) and eliminate

 from sin� + sin  = 3=2 to get

�
1� sin2 �

�
(3=2� sin�)2 (2 sin� � 1)2 > 4 sin2 �

�
1� (3=2� sin�)2

�
(1� sin�)2

from which a factor of (1� sin�) may be cancelled. With s = sin� this
becomes

(s+ 1)
�
s2 � 3s+ 9=4

�
(2s� 1)2 > 4s2

�
3s� s2 � 5=4

�
(1� s)

which reduces to 8s3 � 18s2 + 21s � 9 = (4s� 3)
�
2s2 � 3s+ 3

�
> 0: The

quadratic term is positive-de�nite and we can deduce from this that K > 0
if and only if 4s � 3 > 0; sin� > 3=4; � > �0. This shows that when
� >  the extension of BC beyond C is �rst in T and eventually in F; while
the extension of BC beyond B is always in T: Reversing the roles of �; 
completes the proof.
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Figure 3
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