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BIHARMONIC HYPERSURFACES IN E6
WITH CONSTANT SCALAR CURVATURE

RAM SHANKAR GUPTA

Abstract. In this paper, we study biharmonic hypersurfaces in E6 with
constant scalar curvature. We prove that every such biharmonic hypersur-
face in Euclidean space E6 with at most four distinct principal curvatures
must be minimal.

1. Introduction

The study of biharmonic submanifolds in Euclidean spaces was initiated
by B. Y. Chen in mid 1980s. In particular, he proved that biharmonic
surfaces in Euclidean 3-spaces are minimal. Based on the results of Dimitric
in [10, 11], Chen [2] posed the following well-known conjecture in 1991:
The only biharmonic submanifolds of Euclidean spaces are the minimal

ones.
The conjecture was later proved for hypersurfaces in Euclidean 4-spaces

by Hasanis and Vlachos [15] and also for hypersurfaces with three distinct
principal curvatures in E5 by Fu [16]. It was proved that the Chen�s con-
jecture is true for hypersurfaces with three distinct principal curvatures in
Euclidean space of arbitrary dimension and also for �(2)-ideal and �(3)-ideal
hypersurfaces of a Euclidean space of arbitrary dimension [13, 7]. Also, it
was proved that every biharmonic hypersurface with zero scalar curvature
in E5 must be minimal [8]. Recently, it was proved that every biharmonic
hypersurface in E5 must be minimal [14]. For more results on this topic see
[3].
Chen�s conjecture is not always true for submanifolds of semi-Euclidean

spaces (see [4, 5, 6]). However, for hypersurfaces in semi-Euclidean spaces,
Chen�s conjecture is also right (see [5, 6, 9]). A. Arvanitoyeorgos et al. [1]
proved that biharmonic Lorentzian hypersurfaces in Minkowski 4-spaces are
minimal. It was proved that biharmonic hypersurface in semi-Euclidean
5-spaces with three distinct principal curvatures must be minimal [12].
In this paper, we study biharmonic hypersurfaces in E6 with constant
� � � � � � � � � � � � �
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scalar curvature and prove that:

Theorem 1.1. Every biharmonic hypersurface of constant scalar curvature
in the Euclidean space E6 with at most four distinct principal curvatures is
minimal.

2. Preliminaries

Let (M; g) be a hypersurface isometrically immersed in a 6-dimensional
Euclidean space (E6; g) and g = gjM .
Let r and r denote linear connections on E6 and M , respectively. Then,

the Gauss and Weingarten formulae are given by

(1) rXY = rXY + h(X;Y ); 8 X;Y 2 �(TM);

(2) rX� = �A�X;
where � is the unit normal vector to M , h is the second fundamental form
and A is the shape operator. It is well known that the second fundamental
form h and shape operator A are related by

(3) g(h(X;Y ); �) = g(A�X;Y ):

The mean curvature is given by

(4) H =
1

5
traceA:

The Gauss and Codazzi equations are given by

(5) R(X;Y )Z = g(AY;Z)AX � g(AX;Z)AY;

(6) (rXA)Y = (rYA)X;
respectively, where R is the curvature tensor and

(7) (rXA)Y = rXAY �A(rXY )
for all X;Y; Z 2 �(TM).
A biharmonic submanifold in a Euclidean space is called proper bihar-

monic if it is not minimal. The necessary and su¢ cient conditions for M to
be biharmonic in E6 is

(8) 4H +HtraceA2 = 0;

(9) AgradH +
5

2
HgradH = 0;

where H denotes the mean curvature. Also, the Laplace operator 4 of a
scalar valued function f is given by [3]

(10) 4f = �
5X
i=1

(eieif �reieif);

where fe1; e2; e3; e4; e5g is an orthonormal local tangent frame on M .
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3. Biharmonic hypersurfaces in E6

In this section we study biharmonic hypersurfaces M in E6 with four
distinct principal curvatures. We assume that the mean curvature is not
constant and gradH 6= 0. Assuming non constant mean curvature implies
the existence of an open connected subset U of M , with gradpH 6= 0, for
all p 2 U . From (9), it is easy to see that gradH is an eigenvector of the
shape operator A with the corresponding principal curvature �5

2H. Without
losing generality, we choose e1 in the direction of gradH and �4 = �5 = �
as M has four distinct principal curvatures. Therefore shape operator A of
hypersurfaces will take the following form with respect to a suitable frame
fe1; e2; e3; e4; e5g

(11) AH =

0BBBBBB@
�5
2H

�2
�3

�
�

1CCCCCCA :

The gradH can be expressed as

(12) gradH =

5X
i=1

ei(H)ei:

As we have taken e1 parallel to gradH, consequently

(13) e1(H) 6= 0; ei(H) = 0; i = 2; : : : ; 5:

We express

(14) reiej =
5X
k=1

!kijek; i; j = 1; : : : ; 5:

Using (14) and the compatibility conditions (rekg)(ei; ei) = 0 and (rekg)(ei; ej) =
0, we obtain

(15) !iki = 0; !jki + !
i
kj = 0;

for i 6= j; and i; j; k = 1; : : : ; 5.

Taking X = ei; Y = ej in (7) and using (11), (14), we get

(reiA)ej = ei(�j)ej +
5X
k=1

!kijek(�j � �k):

Putting the value of (reiA)ej in (6), we �nd

ei(�j)ej +

5X
k=1

!kijek(�j � �k) = ej(�i)ei +
5X
k=1

!kjiek(�i � �k);

whereby for i 6= j = k and i 6= j 6= k, we obtain

(16) ei(�j) = (�i � �j)!jji = (�j � �i)!
i
jj ;



42 RAM SHANKAR GUPTA

(17) (�i � �j)!jki = (�k � �j)!
j
ik;

respectively, for distinct i; j; k = 1; :::; 5:
Using (13), (14) and the fact that [ei ej ](H) = 0 = reiej(H)�rejei(H) =

!1ije1(H)� !1jie1(H); for i 6= j and i; j = 2; :::; 5, we �nd

(18) !1ij = !
1
ji:

From (4), we obtain that

(19) �2 + �3 + 2� =
15

2
H; � 6= �5

2
H:

Putting i; j = 4; 5; and i 6= j in (16), we get
(20) ej(�) = 0; for j = 4; 5:

Putting i 6= 1; j = 1 in (16) and using (13) and (15), we �nd
(21) !11i = 0; i = 1; :::; 5:

Putting i = 1; j = 2; :::; 5; in (16) and using (15), we have

(22) !122 =
e1(�2)

�2 � �1
; !133 =

e1(�3)

�3 � �1
; !1jj =

e1(�)

�� �1
; j = 4; 5:

Putting i = 2; 3; j = 4; 5; in (16), we �nd

(23) !2jj =
e2(�)

�� �2
; !3jj =

e3(�)

�� �3
; j = 4; 5:

Putting i = 1; j 6= k; and j; k = 4; 5; in (17), we obtain
(24) !jk1 = 0; j 6= k; and j; k = 4; 5:

Putting i = 2; 3; j 6= k; and j; k = 4; 5; in (17), we have
(25) !jk2 = 0; !jk3 = 0; j 6= k; and j; k = 4; 5:

Putting i = 2; 3; j = 1; and k = 4; 5; in (17), and using (18) we get

(26) !1k2 = !
1
2k = !

1
k3 = !

1
3k = 0; k = 4; 5:

Putting i = 1; j = 2; 3 and k = 4; 5; in (17), and using (18) we �nd

(27) !21k = !
2
k1 = !

3
1k = !

3
k1 = 0; k = 4; 5:

Now, using (14) and (20)�(27), we have:

Lemma 3.1. Let M be a biharmonic hypersurface of non-constant mean
curvature with four distinct principal curvatures in Euclidean space E6, hav-
ing the shape operator given by (11) with respect to a suitable orthonormal
frame fe1; e2; e3; e4; e5g. Then,
re1e1 = re1e2 = re1e3 = 0;re1e4 = !514e5;re1e5 = !415e4; reie1 = �!1iiei; i = 2; : : : ; 5;

reiei =
5X

i6=l;l=1
!liiel; i = 2; : : : ; 5; reiej =

5X
i6=j;k=2

!kijek; i = 2; 3; and j = 2; : : : ; 5;

re4e2 = !342e3 + !442e4;re4e3 = !243e2 + !443e4;re4e5 = !445e4;
re5e2 = !352e3 + !552e5;re5e3 = !253e2 + !553e5;re5e4 = !554e5;

where !iij satisfy (15) and (16).

Next, we have
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Lemma 3.2. Let M be a biharmonic hypersurface of non-constant mean
curvature with four distinct principal curvatures in Euclidean space E6, hav-
ing the shape operator given by (11) with respect to a suitable orthonor-
mal frame fe1; e2; e3; e4; e5g. Then, g(R(e1; ei)e1; ei); g(R(e1; ei)ei; ej) and
g(R(ei; ej)ei; e1) give the following:

(28) e1(!
1
ii)� (!1ii)2 = �1�i; i = 2; : : : ; 5:

(29) e1(!
j
ii)� !

j
ii!

1
ii = 0; i 6= j; j = 2; 3 and i = 2; : : : ; 5;

and

(30) ej(!
1
ii) + !

j
ii!

1
jj � !

j
ii!

1
ii = 0; i 6= j; j = 2; 3 and i = 2; : : : ; 5;

respectively.

Proof. Using (5), (11) and Lemma 3.1, we have
(31)
g(R(e1; ei)e1; ei) = g(Aei; e1)g(Ae1; ei)� g(Ae1; e1)g(Aei; ei) = ��1�i;

or,

(32) � �1�i = g(re1reie1 �reire1e1 �r[e1ei]e1; ei)
= g(re1(�!1iiei)� !1iireie1; ei)
= g(�e1(!1ii)ei + (!1ii)2ei; ei) = �e1(!1ii) + (!1ii)2;

for i = 2; 3:
Also, using (5), (11) and Lemma 3.1, we have

(33)
g(R(e1; e4)e1; e4) = g(Ae4; e1)g(Ae1; e4)� g(Ae1; e1)g(Ae4; e4) = ��1�4;
or,

(34) � �1�4 = g(re1re4e1 �re4re1e1 �r[e1e4]e1; e4)
= g(re1(�!144e4)�!514re5e1�!144re4e1; e4) = g(�e1(!144)e4+(!144)2e4; e4)

= �e1(!144) + (!144)2:
Similarly, g(R(e1; e5)e1; e5) gives

(35) ��1�5 = �e1(!155) + (!155)2:
Combining (32), (34) and (35), we get (28).
Now, using (5), (11) and Lemma 3.1, we have

(36) g(R(e1; ei)ei; ej) = g(Aei; ei)g(Ae1; ej)� g(Ae1; ei)g(Aei; ej) = 0;
for i 6= j and i; j = 2; : : : ; 5. Hence,

(37) 0 = g(re1reiei �reire1ei �r[e1ei]ei; ej) = g(re1(
5X

i6=l;l=1
!liiel)

�!1iireiei; ej) = g((
5X

i6=l;l=1
e1(!

l
ii)el)�!1ii(

5X
i6=l;l=1

!liiel); ej) = e1(!
j
ii)�!

1
ii!

j
ii;

for i 6= j and i; j = 2; 3.
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Evaluating g(R(e1; e4)e4; ej), using (36) and Lemma 3.1, we �nd

(38) 0 = g(re1re4e4 �re4re1e4 �r[e1e4]e4; ej) = g(re1(
5X

i6=l;l=1
!l44el)

�re4(!514e5)� !514re5e4 � !144re4e4; ej) = g((
5X

i6=l;l=1
e1(!

l
44)el)

� !144(
5X

i6=l;l=1
!l44el); ej) = e1(!

j
44)� !144!

j
44;

for j = 2; 3.
Similarly, evaluating g(R(e1; e5)e5; ej) gives

(39) e1(!
j
55)� !155!

j
55 = 0;

for j = 2; 3.
Combining (37), (38) and (39), we get (29).
Next, using (5), (11) and Lemma 3.1, we obtain

(40) g(R(ei; ej)ei; e1) = g(Aej ; ei)g(Aei; e1)� g(Aei; ei)g(Aej ; e1) = 0;

for i 6= j, and i; j = 2; : : : ; 5: Therefore

(41) 0 = g(reirejei �rejreiei �r[eiej ]ei; e1) = g(rei(
5X

j 6=i;k=2
!kjiek)

�rej (
5X

i6=l;l=1
!liiel)�rreiej�rej eiei; e1) = g(

5X
j 6=i;k=2

(ei(!
k
ji)ek+!

k
jireiek); e1)

� g(
5X

i6=l;l=1
(ej(!

l
ii)el + !

l
iirejel); e1)� g(rreiej�rej eiei; e1);

for i 6= j, and i; j = 2; 3:
Now,

g(
5X

j 6=i;k=2
(ei(!

k
ji)ek + !

k
jireiek); e1) = 0;

as reiek is not having component along e1 for i 6= k and for i = k, we have
!iji = 0:
Similarly,

g(
5X

i6=l;l=1
(ej(!

l
ii)el + !

l
iirejel); e1) = ej(!1ii) + !1jj!

j
ii

and

g(rreiejei; e1) = g(
5X

k=2;i6=j
!kijrekei; e1) = !iijg(reiei; e1) = �!

j
ii!

1
ii;
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g(rrej eiei; e1) = g(
5X

k=2;i6=j
!kjirekei; e1) = !ijig(reiei; e1) = 0:

Therefore, we get

(42) ej(!
1
ii) + !

1
jj!

j
ii � !

j
ii!

1
ii = 0;

for i 6= j, and i; j = 2; 3:
Evaluating g(R(e4; ej)e4; e1) and g(R(e5; ej)e5; e1) using (40) and Lemma

3.1, we obtain

(43) ej(!
1
44) + !

1
jj!

j
44 � !

j
44!

1
44 = 0;

and

(44) ej(!
1
55) + !

1
jj!

j
55 � !

j
55!

1
55 = 0;

for j = 2; 3:
Combining (42), (43) and (44), we get (30). Whereby proof of Lemma

3.2 is complete.
From (11), we �nd

traceA2= 25H2

4 + �22 + �
2
3 + 2�

2:

Evaluating scalar curvature of the hypersurface, using (2.5) and (3.1), we
get

(45) � =
75H2

4
� �22 � �23 � 2�2 =

75H2

4
�

5X
j=2

�2j ;

where � denotes the scalar curvature.
Using Lemma 3.1, (10), (13), (45) and putting the value of traceA2 in (8),

we obtain

(46) �e1e1(H) +
5X
j=2

!1jje1(H) + 25H
3 � �H = 0:

Using (13), Lemma 3.1, and the fact that [ei e1](H) = 0 = reie1(H) �
re1ei(H); for i = 2; : : : ; 5, we �nd
(47) eie1(H) = 0:

Also, from (47) and using the fact that [ei e1](e1(H)) = 0 = reie1(e1(H))�
re1ei(e1(H)), we obtain
(48) eie1e1(H) = 0; i = 2; : : : ; 5:

Now, we have:

Lemma 3.3. Let M be a biharmonic hypersurface with four distinct prin-
cipal curvatures in Euclidean space E6, having the shape operator given by
(3.1) with respect to a suitable orthonormal frame fe1; e2; e3; e4; e5g. If the
scalar curvature is constant, then

!422 = !
4
33 = !

5
22 = !

5
33 = 0:



46 RAM SHANKAR GUPTA

Proof. The equation (19) can be written as

(49)
5X
j=2

�j =
15H

2
:

Di¤erentiating (49) with respect to ei and using (13) and (20), we get

(50) ei(�2) + ei(�3) = 0; i = 4; 5:

Di¤erentiating (45) with respect to ei and using (50) and (20), we �nd

(51) (�3 � �2)ei(�3) = 0;
for i = 4; 5: From (51) and (50), we get ei(�3) = ei(�2) = 0. Which by use
of (16) completes the proof of the Lemma.
Next, we have:

Lemma 3.4. Let M be a biharmonic hypersurface with four distinct prin-
cipal curvatures in Euclidean space E6, having the shape operator given by
(11) with respect to a suitable orthonormal frame fe1; e2; e3; e4; e5g. If the
scalar curvature is constant, then

(52) ei(!
1
ii) = �

5X
i6=j;j=2

!ijj [!
1
jj � !1ii];

(53) ei(!
1
ii) = �

1

(�i � �1)

5X
i6=j;j=2

!ijj(!
1
jj � !1ii)(2�j � �i � �1);

(54)
5X

j 6=i;j=2
!ijj [(!

1
jj � !1ii)(�j � �i)] = 0;

(55)
5X

j 6=i;j=2
!ijj(�j � �i)2 = 0;

(56)
5X

j 6=i;j=2
!ijj(�j � �i)[(!1jj(3�j�i � 2�1)� 2!1ii)(�i � �1)] = 0;

for i = 2; 3:

Proof. Di¤erentiating (46) with respect to ei and using (13), (47) and (48),
we �nd

5X
j=2

ei(!
1
jj)e1(H) = 0;

or,

(57) ei(!
1
ii) +

5X
i6=j;j=2

ei(!
1
jj) = 0;

whereby using (30), we �nd (52).
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Di¤erentiating (49) with respect to ei and using (13), we get

(58) ei(�i) +
5X

j 6=i;j=2
ei(�j) = 0; i = 2; 3:

Next, di¤erentiating (58) with e1, we have

(59) e1ei(�i) +

5X
i6=j;j=2

e1ei(�j) = 0:

From Lemma 3.1, we get eie1�e1ei = reie1�re1ei = �!1iiei, for i = 2; 3.
Therefore, equation (59) can be written as

(60) eie1(�i) + !
1
iiei(�i) +

5X
i6=j;j=2

e1ei(�j) = 0:

Using (16) and (58) in (60), we get

(61) ei(!
1
ii)(�i � �1) + !1iiei(�i)�

5X
i6=j;j=2

!1iiei(�j)

+
5X

i6=j;j=2
[e1(!

i
jj)(�j � �i) + !ijje1(�j � �i)] = 0:

Using (16), (58) and (29) in (61), we �nd

(62) ei(!
1
ii)(�i � �1)� 2

5X
i6=j;j=2

!1iiei(�j) +

5X
i6=j;j=2

[!1jj!
i
jj(�j � �i)

+ !ijj(!
1
jj(�j � �1)� !1ii(�i � �1))] = 0:

Using (16) in (62), we obtain (53).
Eliminating ei(!1ii) from (52) and (53), we obtain (54).

Next, di¤erentiating (45) with respect to ei, we get

(63)
5X
j=2

�jei(�j) = 0;

or,

(64) �iei(�i) +

5X
j 6=i;j=2

�jei(�j) = 0; i = 2; 3:

Using (58) and (16) in (64), we obtain (55).

Now, di¤erentiating (55) with respect to e1, we get

(65)
5X

j 6=i;j=2
e1(!

i
jj)(�j � �i)2 + 2!ijj(�j � �i)e1(�j � �i) = 0:

Using (29) and (16) in (65), we �nd (56). Which completes the proof of
the Lemma.
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Further, we have

Lemma 3.5. Let M be a biharmonic hypersurface with four distinct prin-
cipal curvatures in Euclidean space E6, having the shape operator given by
(11) with respect to a suitable orthonormal frame fe1; e2; e3; e4; e5g. If the
scalar curvature is constant, then

!233 = !
2
44 = !

2
55 = 0; !322 = !

3
44 = !

3
55 = 0:

Proof. Putting i = 2; 3 in (54), we �nd following:

(66) !233[(!
1
33 � !122)(�3 � �2)] + 2!244[(!144 � !122)(�� �2)] = 0;

and

(67) !322[(!
1
33 � !122)(�3 � �2)] + 2!344[(!144 � !133)(�� �3)] = 0;

respectively.
Similarly, by putting i = 2; 3 in (55), we get following:

(68) !233(�3 � �2)2 + 2!244(�� �2)2 = 0;
and

(69) !322(�3 � �2)2 + 2!344(�� �3)2 = 0;
respectively.
Similarly, by putting i = 2; 3 in (56), we get following:

(70)
!233(�3 � �2)[!133(3�3 � �2 � 2�1)� 2!122(�2 � �1)]

+2!244(�� �2)[!144(3�� �2 � 2�1)� 2!122(�2 � �1)] = 0;
and

(71)
!322(�2 � �3)[!122(3�2 � �3 � 2�1)� 2!133(�3 � �1)]

+2!344(�� �3)[!144(3�� �3 � 2�1)� 2!133(�3 � �1)] = 0;
respectively.
We claim that !233=0 and !

2
44=0. In fact, if !

2
33 6= 0 and !244 6= 0, then

the value of determinant formed by coe¢ cients of !233 and !
2
44 in (66) and

(68) and the value of determinant formed by coe¢ cients of !233 and !
2
44 in

(68) and (70) will be zero. Therefore, we obtain that

(72) (�� �2)(!133 � !122)� (!144 � !122)(�3 � �2) = 0;
and

(73)
(�� �2)[!133(3�3 � �2 � 2�1)� 2!122(�2 � �1)]
�(�3 � �2)[!144(3�� �2 � 2�1)� 2!122(�2 � �1)] = 0;

respectively.
Eliminating !133, from (72) and (73), we get

(74) !122 = !
1
44;

which is not possible as from (28), it gives �2 = �4, a contradiction. There-
fore, !233 = 0 and !

2
44 = 0.

In an analogous manner, using (67), (69) and (71), we �nd that !322 = 0
and !344 = 0. From (23), we have !244 = !255 and !

3
44 = !355. Therefore,

!255 = !
3
55 = 0, which completes the proof of the Lemma.

Now, we have:
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Lemma 3.6. Let M be a biharmonic hypersurface with four distinct prin-
cipal curvatures in Euclidean space E6, having the shape operator given by
(11) with respect to a suitable orthonormal frame fe1; e2; e3; e4; e5g. If the
scalar curvature is constant, then !423 = !

4
32 = !

3
42 = !

3
24 = !

2
34 = !

2
43 = 0;

and !523 = !
5
32 = !

3
52 = !

3
25 = !

2
35 = !

2
53 = 0:

Proof. From Lemma 3.5 and Lemma 3.1, we have

(75) re2e3 = !423e4 + !523e5; re3e2 = !432e4 + !532e5:
Now, evaluating g(R(e1; e3)e2; e4); g(R(e1; e2)e3; e4); g(R(e1; e3)e2; e5)

and
g(R(e1; e2)e3; e5), using (5), (11) and (75), we �nd

(76) e1(!
4
32) + !

5
32!

4
15 � !432!133 = 0;

(77) e1(!
4
23) + !

5
23!

4
15 � !423!122 = 0;

(78) e1(!
5
32) + !

4
32!

5
14 � !532!133 = 0;

and

(79) e1(!
5
23) + !

4
23!

5
14 � !523!122 = 0;

respectively.
Putting j = 4; k = 2; i = 3 in (17), we get

(80) (�2 � �)!432 = (�3 � �)!423:
Putting j = 5; k = 2; i = 3 in (17), we get

(81) (�2 � �)!532 = (�3 � �)!523:
Di¤erentiating (80) with e1, and using (76) and (77), we �nd

(82) (e1(�2)� e1(�))!432 + (�2 � �)(!432!133 � !532!415)
= (e1(�3)� e1(�))!423 + (�3 � �)(!423!122 � !523!415):

Putting the values of e1(�2); e1(�3) and e1(�) from (16) and using (81) in
(82), we obtain

(83) !432(!
1
22 � !144) = !423(!133 � !144):

Substituting the value of !423 from (80) in (83), we �nd

(84) !432[(�� �2)(!133 � !122)� (!144 � !122)(�3 � �2)] = 0:
As from (72), we have seen that assuming
(�� �2)(!133 � !122)� (!144 � !122)(�3 � �2) = 0;
leads to contradiction, therefore from (84), we obtain !432 = 0; which

together with (80) gives !423 = 0: Also, from (15), we get !234 = �!432 and
!423 = �!324. Consequently, we obtain !234 = 0, and !324 = 0, which together
with (17) gives !243 = 0 and !

3
42 = 0.

Similarly, using (81), (78) and (79), we can show that

!523 = !
5
32 = !

3
52 = !

3
25 = !

2
35 = !

2
53 = 0;

whereby proof of Lemma 3.6 is complete.
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4. Proof of the theorem

Evaluating g(R(e2; e3)e2; e3); g(R(e2; e4)e2; e4); and g(R(e3; e4)e3; e4) and
keeping in view Lemma 3.1, Lemma 3.5 and Lemma 3.6, we �nd

(85) �!122!133 = �2�3; �!122!144 = �2�; �!133!144 = �3�:
From (85), we get

(86) (!122)
2 + (�2)

2 = 0; (!133)
2 + (�3)

2 = 0; (!144)
2 + �2 = 0:

From (86), we �nd �2 = �3 = � = 0. Which is a contradiction of four
distinct principal curvatures.
Also, the cases of three or two distinct principal curvatures for biharmonic

hypersurfaces in Euclidean space of arbitrary dimension has already been
proved in [11, 13] and have also concluded that H must be zero, whereby
showing that the proof of Theorem 1.1 is complete.
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