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ARCHIMEDEAN CIRCLES PASSING

THROUGH A SPECIAL POINT

HIROSHI OKUMURA

Abstract. We consider infinitely many Archimedean circles of the arbe-
los passing through a special point.

1. Introduction

Each of the two congruent areas surrounded by three mutually touching
circles with collinear centers in the plane is called arbelos. The radical axis of
the two inner circles divides each of the arbeloi into two curvilinear triangles
with congruent incircles. Circles congruent to those congruent circles are
called Archimedean circles of the arbelos, which are one of the main topics
on the arbelos.
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Figure 1.

We denote the circle with a diameter PQ by (PQ) for two points P and Q.
The center of a circle δ is denoted by Oδ. Let O be a point on the segment
AB, |AO| = 2a, |BO| = 2b, α = (AO), β = (BO) and γ = (AB). We use
a rectangular coordinate system with origin O such that the points A and
B have coordinates (2a, 0) and (−2b, 0), respectively. The common radius
of Archimedean circles is rA = ab/(a + b). Thomas Schoch has considered
the two circles with centers A and B and passing through the point O, and
has found that the circles touching the two circles externally and the circle
γ internally are Archimedean [1].
————————————–
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The line joining their centers is called the Schoch line (see Figure 1). We
denote the point of intersection of the circle (OαOβ) and the Schoch line
lying in the region y > 0 by P . In this article we consider infinitely many
Archimedean circles passing through this point.

2. A characterization of Archimedean circles passing through

P

In this section we characterize the Archimedean circles passing through
the point P . Let s = (b − a)rA/(a + b). The Schoch line is expressed by
the equation x = s [6]. The circle (OαOβ) is expressed by the equation

(x − a)(x + b) + y2 = 0. Let p =
√

(3a+ b)(a+ 3b). The point P has
coordinates

(1) (px, py) =

(

s,
prA
a+ b

)

.
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Figure 2.

Let α′ be the reflection of the circle α in the point P (see Figure 2). The
center of α′ has coordinates

(2px − a, 2py) .

Let α be the circle of radius a touching the circles α and α′ externally
and lying on the side opposite to β of the line OαP . The center of α has
coordinates

(2) (2rA, rAp/b) .

Therefore the smallest circle passing through the point Oα and touching

the radical axis of α and β is Archimedean. Let t = a/(2(a + b)) and
u = a(a+ 3b)/(2(a+ b)2). The circle α touches α and α′ at points R and S
with coordinates

(3) ((a+ 3b)t, pt) and ((b− a)u, pu),

respectively. The internal center of similitude of α and β divides the segment
OαOβ in the ratio a : b internally and has coordinates equal to (1). Hence
the point P is the internal center of similitude of α and β. The next theorem
is a generalization of results in [5].

Theorem 2.1. Let ǫ and ζ be circles being outside each other and having
radius e and f , respectively, such that their internal center of similitude is
a point I. Let K be the external center of similitude of the circles (IJ) and
ζ for a point J . Then the following three statements are equivalent.
(i) The circle (IJ) has radius ef/(e+ f).
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(ii) The point K lies on ǫ and the vectors
−−→
OǫK and

−→
IJ are parallel and have

the same direction.
(iii) The point K lies on ǫ.

Proof. We may assume that the centers of ǫ and ζ has coordinates (ke, 0)
and (−kf, 0), respectively for a real number k. If (IJ) has radius r =
ef/(e+ f), then its center has coordinates (r cos θ, r sin θ) for a real number
θ. Then S has coordinates

(−rkf + fr cos θ

f − r
,
fr sin θ

f − r

)

= (ke+ e cos θ, e sin θ).

Therefore (i) implies (ii). Obviously (ii) implies (iii). Let us assume (iii) and
(IJ) has radius g. Then the center of (IJ) is expressed by (g cos θ, g sin θ)
for a real number θ. But K coincides with the center of similitude of ζ
and the circle of radius r with center (r cos θ, r sin θ) as shown just above.
Therefore we get g = r. Therefore (iii) implies (i).

By the theorem we get the following corollary (see Figure 2).

Corrolary 2.1. Let δ be a circle passing through P , and let K (resp. L) be
the external center of similitude of δ and β (resp. α). If δ is Archimedean,

the vectors
−−→
POδ,

−−−→
OαK and

−−→
OβL are parallel and have the same direction.

The following three statements are equivalent.
(i) The circle δ is Archimedean.
(ii) The point K lies on the circle α.
(iii) The point L lies on the circle β.
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Figure 3.

3. A quadruplet of Archimedean circles

From now on, we consider special Archimedean circles passing through
P . If two congruent circles of radius r touch at a point D and also touch
a circle δ at points different from D, we say D generates circles of radius r
with δ. If the two circles are Archimedean, we say D generates Archimedean
circles with δ. Since this kind of Archimedean circles were firstly discovered
by Frank Power [7], we call those circles Power type Archimedean circles. In
this section we give several Power type Archimedean circles passing through
P . The following lemma is needed [2].

Lemma 3.1. If δ is a circle of radius r, a point D generates circles of radius
|r2 − |DOδ|2|/(2r) with δ.

By the lemma with (1), we get the following theorem (see Figure 4).
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Theorem 3.1. The point P generates Archimedean circles with each of the
circles α and β.

The line joining the centers of the two Archimedean circles touching α is
perpendicular to the line POα. Therefore it passes through the point Oβ.
Similarly the line joining the centers of the two Archimedean circles touching
β passes through the point Oα. Hence the two Archimedean circles touching
α are orthogonal to the two Archimedean circles touching β. Therefore the
centers of the four Archimedean circles form vertices of a square. The four
centers also lie on the Archimedean circle with center P .
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Figure 4.

Let δ1 (resp. δ3) be the Power type Archimedean circle touching α and
also touching POα from the side opposite to α (resp. β). Also let δ2 (resp.
δ4) be the Power type Archimedean circle touching β and also touching POβ

from the side opposite to α′ (resp. α). Let Ti (resp. Ui) (i = 1, 2, 3, 4) be
the external center of similitude of δi and β (resp. α). Then T1 (resp. U3)
is the closest point on α (resp. β) to P , and T3 (resp. U1) is the farthest
point on α (resp. β) from P . The point T2 and T4 are the midpoints of the
circular arcs of α with endpoints T1 and T3. Similar fact also holds for the
point Ui (i = 1, 2, 3, 4).

4. Another quadruplet

We show that there is another quadruplet of Archimedean circles passing
through the point P . Unexpectedly the golden ratio appears in this case. Let
Q be the point of intersection of OP and γ. The circle (OαOβ) is the image
of γ by the homothety with homothety center O and ratio 1/2. Therefore P
is the midpoint of the segment OQ, and Q has coordinates (2px, 2py). The
point Q also lies on the circle α′. Let ǫ1 and ǫ2 be circles with center O and
radii φ|OP | and φ−1|OP |, respectively, where φ is the value of the golden
ratio, i.e., φ = (1 +

√
5)/2 (see Figure 5).

Theorem 4.1. The point P generates Archimedean circles with each of the
circles ǫ1 and ǫ2, and the Archimedean circles generated by P with ǫ1 coincide
with the Archimedean circles generated by P with ǫ2. Also the circles (OP )
and (PQ) are Archimedean, which are orthogonal to the Archimedean circles
generated by P with ǫ1.

Proof. By (1), |OP | = 2rA. By the Lemma 3.1 with this fact, we can
see that P generates Archimedean circles with each of the circles ǫ1 and ǫ2.
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Since O is the common center of ǫ1 and ǫ2, the generated circles coincide.
The rest of the theorem is obvious.

The centers of the four Archimedean circles also form vertices of a square.
The circle (OP ) passes through the point of intersection of the Schoch line
and the line AB. Recall (3), i.e., the point R has coorinates ((a+ 3b)t, pt).
But the external center of similitude of the circles β and (OP ) has coordi-
nates

(−rA(−b) + bpx/2

b− rA
,
bpy/2

b− rA

)

= ((a+ 3b)t, pt).

Therefore the external center of similitude of β and (OP ) coincides with the

point R. This implies that the lines OP and OαR are parallel by Theorem
2.1. Hence the external center of similitude of β and (PQ) is the point of
intersection of the line OαR and the circle α different from R.
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Figure 5.

Since (OP ) passes through O, and O is the internal center of similitude
of α and β, the external center of similitude of α and (OP ) lies on β [5].
We denote this point by T . Let T ′ be the external center of similitude of α

and (PQ). Then
−−→
OP and

−−→
OβT , and

−−→
PQ and

−−−→
OβT

′ are parallel and have the
same direction, respectively. Therefore the points T and T ′ coincide.

5. A pair of Archimedean circles

Let U be the point of intersection of the segment AP and the circle α, and
let V be the point of intersection of the segment BQ and the circle β (see
Figure 6). Then OUQV is a rectangle with center P . Hence |UV | = |OQ|.
Therefore the circles (PU) and (PV ) are Archimedean. These circles are
also obtained in a special case considered in [2] and [3]. They touch at P .
The points U and V have coordinates

(ux, uy) =

(

2r2A(3a+ b)

(a+ b)a
,

2r2Ap

(a+ b)b

)

and (vx, vy) =

(

−2r2A(a+ 3b)

(a+ b)b
,

2r2Ap

(a+ b)a

)

,

respectively.
Recall (3), i.e., the point S has coordinates ((b− a)u, pu). Since pu/((b−

a)u) = p/(b − a) = py/px, it lies on the line OP . On the other hand, the
external center of similitude of the circles β and (PV ) has coordinates

(−rA(−b) + b(px + vx)/2

b− rA
,
b(py + vy)/2

b− rA

)

= ((b− a)u, pu).

Hence the external center of similitude of β and (PV ) coincides with S.
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Let us assume a 6= b, and let W be the point of intersection of the line
OP and β different from O. It has coordinates (rA(b− a)w, rApw), where
w = (a − b)/(2a(a + b)). It lies in the region y > 0 or y < 0 according as
a > b or a < b. By (2), the external center of similitude of α and (PU) has
coordinates
(−rA2rA + a(px + ux)/2

a− rA
,
−rArAp/b+ a(py + uy)/2

a− rA

)

= (rA(b−a)w, rApw).

Therefore the external center of similitude of α and (PU) coincides with W .
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