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TWO INEQUALITIES FOR A POINT

IN THE PLANE OF A TRIANGLE

JIAN LIU

Abstract. In this paper we establish two new geometric inequalities
involving an arbitrary point in the plane of a triangle. It is interesting
that the equalities in both inequalities hold if and only if the point coincide
with a special point of the original triangle. We also give a related geometric
identity and several new inequalities by the main results. Finally, two elegant
conjectures for the Erdös-Mordell inequality are put forward.

1. Introduction and main results

Let P be a point in the plane of triangle ABC. Denote by R1; R2; R3 the
distance of P from the vertices A;B;C, and r1; r2; r3 the distance of P from
the sidelines BC;CA;AB respectively. If P lies in the interior of ABC, then
we have the following famous Erdös-Mordell inequality:

(1) R1 +R2 +R3 � 2(r1 + r2 + r3);
with equality holds if and only if 4ABC is equilateral and P is its center.
This inequality has attracted attention of many researchers since it �rst
appeared in [10](see, e.g. [1]-[4], [8], [9], [11]-[14], [21]-[25]). In fact, it is well
known that the stronger inequality:
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holds for interior point P , where a = BC; b = CA; c = AB. Equality holds
if and only if P is the circumcenter of 4ABC.
In [8], N.Dergiades generalized (2) to an arbitrary point in the plane:
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where ~r1; ~r2; ~r3 denote the directed (signed) distances from P to the sidelines
BC;CA;AB respectively.
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The directed distance ~r1 from P to BC is de�ned as follows: When the
orientation around vertices P;B;C is counterclockwise, then ~r1 is positive
and ~r1 = r1; Conversely, ~r1 is negative and ~r1 = �r1 (If P lies on the line
BC then ~r1 = r1 = 0, etc). Similarly, we de�ne ~r2 and ~r3. For example,
~r1; ~r2; ~r3 are all positive in Figure 1; ~r2 is negative and ~r1; ~r3 are positive
in Figure 2. In addition, we shall use directed ares of triangles. The de�n-
ition of directed area of a triangle is as follows: Given a triangle XY Z, if
the orientation around the vertices X;Y; Z is counterclockwise, then the di-
rected area ~S4XY Z of4XY Z is positive and ~S4XY Z = S4XY Z ; Conversely,
~S4XY Z is negative and ~S4XY Z = �S4XY Z (If P lies on the line BC then
~S4XY Z = S4XY Z = 0, etc). For example, we have ~S4ABC = S4ABC and
~S4DEF = �S4DEF in Figure 2.

Figure 1 Figure 2

D.Nikolaos�proof used the following simple inequality:

(4) aR1 � b~r2 + c~r3;
(two similar relations are also valid) with equality holds if and only if PA ?
BC.
Recently, the author �rst found that the following interesting inequality

can be derived by using (4):

(5) a2
�
R21 � r21

�
+ b2

�
R22 � r22

�
+ c2

�
R23 � r23

�
� 4S2;

where S is the area of 4ABC. Equality holds if and only if P is the ortho-
center of 4ABC.
The proof of (5) is very simple. By (4) and the evident identity

(6) a~r1 + b~r2 + c~r3 = 2~S;

where ~S is the directed area of 4ABC, we have
a2
�
R21 � r21

�
+ b2

�
R22 � r22

�
+ c2

�
R23 � r23

�
� 4S2

� (b~r2 + c~r3)2 + (c~r3 + a~r1)2 + (a~r1 + b~r2)2 � (a2r21 + b2r22 + c2r23)
�(a~r1 + b~r2 + c~r3)2

= a2 ~r1
2 + b2 ~r2

2 + c2 ~r3
2 � (a2r21 + b2r22 + c2r23)

= 0:

Thus, inequality (5) is proved and the equality in (5) holds only when PA ?
BC;PB ? CA;PC ? AB, i.e., P is the orthocenter of 4ABC.
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Inequality (5) inspires the author to �nd similar results. Finally, we obtain

Theorem 1.1. Let P be a point in the plane of triangle ABC with sides
a; b; c, the semi-perimeter s and the area S. Then

(7) a(s� a)(R21 � r21) + b(s� b)(R22 � r22) + c(s� c)(R23 � r23) � 2S2:

Equality holds if and only if P coincide with the symmetrical point I 0 of the
incentre I with respect to the circumcenter O of 4ABC.

If we denote by ha; hb; hc the altitudes corresponding to sides a; b; c and
denote by ra; rb; rc the corresponding radii of the excircles of 4ABC, then
inequality (7) is equivalent to

(8)
R21 � r21
hara

+
R22 � r22
hbrb

+
R23 � r23
hcrc

� 1;

since we have aha = 2S; (s� a)ra = S, etc..
Theorem 1.1 implies the following interesting conclusion: If 4ABC is

given, then the left-hand side of (7) or (8) attains the minimum value at
when P coincides with the point I 0.
After �nding and proving inequality (7), the author noted a succinct

formula about point I 0 (see Lemma 2.6 below). This formula motives the
author to �nd again a new inequality whose equality condition is the same
as in (7). In this respect we prove the following:

Theorem 1.2. Let P be a point in the plane of triangle ABC with the
directed area ~S and the circumradius R, let ~Sp be the directed area of the
pedal triangle DEF of P with respect to triangle ABC. Then

(9) ~r1 + ~r2 + ~r3 +
2R ~Sp
~S

� 2R:

Equality holds if and only if P coincide with the symmetrical point I 0 of the
incentre I with respect to the circumcenter O of 4ABC.

In particular, when P lies inside triangle ABC, it follows from (9) that

(10) r1 + r2 + r3 +
2RSp
S

� 2R;

where Sp is the area of the pedal triangle DEF .
In [18], the author conjectured that the following inequality:

(11) r1 + r2 + r3 � 2Rp +
2RSp
S

holds for any interior point P of 4ABC, where Rp is circumradius of the
pedal triangle DEF .
It is interesting to compare (10) with (11).

2. Proofs of Theorems

2.1. Proof of Theorem 1.1. In order to prove Theorem 1.1, we need the
following several lemmas in which Lemma 1, 2, 3 and 4 are all well-known
in geometry(cf. [5], [6], [7], [22], [26]).
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Lemma 2.1. Let P and M be two points in the plane of 4ABC and let
(x; y; z) be the barycentric coordinates of M with respect to 4ABC. Then
(12)
(x+y+z)2PM2 = (x+y+z)(xPA2+yPB2+zPC2)�(yza2+zxb2+xyc2);

where a; b; c are the lengths of the sides BC;CA;AB respectively.

In particular, putting M = A in (12) we obtain the following important
consequence (e.g. see [22]):

Lemma 2.2. Let P be a point with barycentric coordinates (x; y; z) in the
plane of 4ABC. Then

(13) (x+ y + z)2PA2 = (x+ y + z)(yc2 + zb2)� (yza2 + zxb2 + xyc2);

where a; b; c are the lengths of the sides BC;CA;AB respectively.

For the distances from a point to the sides of a triangle, we have the
following known formulae:

Lemma 2.3. Let P be a point in the plane of 4ABC with barycentric
coordinates (x; y; z) and let ~r1; ~r2; ~r3 be the directed distances from P to the
sidelines BC;CA;AB respectively. Then

~r1 =
xha

x+ y + z
; ~r2 =

yhb
x+ y + z

; ~r3 =
zhc

x+ y + z
;

where ha; hb; hc are altitudes corresponding to the sides BC;CA;AB.

Lemma 2.4. Let Pi be points in the plane of 4ABC with barycentric co-
ordinates (xi; yi; zi) (i = 1; 2; 3). Then P1; P2; P3 are collinear if and only if
the following determinant holds:

(14)

������
x1 y1 z1
x2 y2 z2
x3 y3 z3

������ = 0:
Lemma 2.5. Let p1; p2; p3; q1; q2; q3 be real numbers, then the following
ternary quadratic inequality:

(15) p1x
2 + p2y

2 + p3z
2 � q1yz + q2zx+ q3xy

holds for all real numbers x; y; z if and only if p1 � 0; p2 � 0; p3 � 0; 4p2p3�
q21 � 0; 4p3p1 � q22 � 0; 4p1p2 � q23 � 0; and

(16) D � 4p1p2p3 � (q1q2q3 + p1q21 + p2q22 + p3q23) � 0:

The equality conditions of (15) (suppose that p1 > 0; p2 > 0; p3 > 0) are as
follows:
1� If D = 0, 4p1p2 � q23 = 0; 4p3p1 � q22 = 0, then 4p2p3 � q21 = 0 and the

equality in (15) holds only when 2p1x = q3y + q2z.
2� If D � 0; 4p2p3 � q21 > 0; 4p3p1 � q22 > 0; 4p1p2 � q23 = 0, then the

equality in (15) holds only when D = 0; z = 0; 2p1x = q3y:
3� If D � 0; 4p2p3 � q21 > 0; 4p3p1 � q22 > 0; 4p1p2 � q23 > 0; x 6= 0; y 6=

0; z 6= 0, then the equality in (15) holds only when D = 0; (2p1q1 + q2q3)x =
(2p2q2 + q3q1)y = (2p3q3 + q1q2)z.
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The above lemma not only gives a necessary and su¢ cient condition of
(15)(this is well-known, see e.g. [20]) but also give its equality conditions.
Here, we o¤er an elementary proof as follows:

Proof. Inequality (15) can be rewritten as

(17) p1x
2 � (q3y + q2z)x+ p2y2 � q1yz + p3z2 � 0:

We know this inequality holds for any real number x if and only if p1 � 0,
and

p2y
2 � q1yz + p3z2 � 0;(18)

(q3y + q2z)
2 � 4p1(p2y2 � q1yz + p3z2) 6 0:(19)

Again, (18) holds for any real numbers y; z if and only if p2 � 0; p3 �
0; q21 � 4p2p3 6 0. Inequality (18) is equivalent to
(20) (4p1p2 � q23)y2 � 2(2p1q1 + q2q3)yz + (4p3p1 � q22)z2 � 0;
which holds for any real numbers y; z if and only if 4p1p2 � q23 � 0; 4p3p1 �
q22 � 0, and

[�2(2p1q1 + q2q3)]2 � 4(4p1p2 � q23)(4p3p1 � q22) 6 0;
or

(21) (4p1p2 � q23)(4p3p1 � q22)� (2p1q1 + q2q3)2 � 0;
which is equivalent to

16p1(p1q
2
1 + p2q

2
2 + p3q

2
3 + q1q2q3 � 4p1p2p3) 6 0:

Since p1 � 0 we have
(22) 4p1p2p3 � (q1q2q3 + p1q21 + p2q22 + p3q23) � 0;
i.e. D � 0.
Combining with the above arguments, we conclude that the necessary

and su¢ cient conditions of (15) holds for any real numbers x; y; z are p1 �
0; p2 � 0; p3 � 0; 4p2p3 � q21 � 0; 4p3p1 � q22 � 0; 4p1p2 � q23 � 0; D � 0:
In what follows, we are going to discuss the equality condition in (15).
Clearly, the equality in (17) and then (15) holds if and only if

(23) 2p1x� q3y � q2z = 0
and there is equality in (18) or (20), i.e.

(24) (4p1p2 � q23)y2 � 2(2p1q1 + q2q3)yz + (4p3p1 � q22)z2 = 0:
According to these, we will discuss the equality conditions of (15) under the
di¤erent cases(suppose that p1 > 0; p2 > 0; p3 > 0 for each case):
Case 1� D = 0; 4p1p2 � q23 = 0; 4p3p1 � q22 = 0:
In this case, we have 16p2p3p21 = q22q

2
3 and (21) becomes an identity.

Hence it follows from (21) that 2p1q1 + q2q3 = 0. Thus(24) holds and

4p2p3 � q21 =
q22q

2
3

4p21
� q21 = 0. Also, the equality in (15) holds only when (23)

is valid.
Case 2� D � 0; 4p2p3 � q21 >; 4p3p1 � q22 > 0; 4p1p2 � q23 = 0:
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By 4p1p2�q23 = 0 and (21), we have 2p1q1+q2q3 = 0. Then (24) becomes
(4p3p1 � q22)z2 = 0, hence z = 0 and it follows from (23) that 2p1x = q3y.
Therefore, there is equality in (15) only when D = 0; z = 0; 2p1x = q3y.
Case 3� D � 0; 4p2p3 � q21 > 0; 4p3p1 � q22 > 0; 4p1p2 � q23 > 0; x 6= 0; y 6=

0; z 6= 0:
First, it is easy to know that there is equality in (20) only when D = 0

and
2(4p1p2 � q23)y � 2(2p1q1 + q2q3)z = 0;

i.e.

(25)
y

z
=
2p1q1 + q2q3
4p1p2 � q23

:

Using (23) and (25), we easily get

(26)
x

z
=
2p2q2 + q3q1
4p1p2 � q23

:

In addition, using D = 0, it is easy to prove the following two identities:

(27)
2p1q1 + q2q3
4p1p2 � q23

=
2p3q3 + q1q2
2p2q2 + q3q1

;

(28)
2p2q2 + q3q1
4p1p2 � q23

=
2p3q3 + q1q2
2p1q1 + q2q3

:

Thus, it follows from (25)-(28) that

(29) (2p1q1 + q2q3)x = (2p2q2 + q3q1)y = (2p3q3 + q1q2)z:

Hence the equality in (15) under the third case if and only if D = 0 and (29)
are both valid. This completes the proof of Lemma 2.5.
We now prove Theorem 1.1.

Proof. Denote by (x; y; z) the barycentric coordinates of P with respect to
4ABC. By Lemma 2.2, it is easy to obtain that

(30) R21 =
y2c2 + z2b2 + yz(b2 + c2 � a2)

(x+ y + z)2
:

From and Lemma 2.3, we have

(31) R21 � r21 =
y2c2 + z2b2 + yz(b2 + c2 � a2)

(x+ y + z)2
� 4x2S2

a2(x+ y + z)2
:

ThereforeX
a(s� a)(R21 � r21)

=

P
a(s� a)[y2c2 + z2b2 + yz(b2 + c2 � a2)]

(
P
x)2

� 4S2

(
P
x)2

X s� a
a
x2;

where
P
denote cyclic sums. Hence, the inequality (7) of Theorem 1.1 is

equivalent to
(32)X

a(s� a)[y2c2 + z2b2 + yz(b2 + c2 � a2)]�4S2
X s� a

a
x2 � 2

�X
x
�2
S2:
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Replacing x! xa; y ! yb; z ! zc, again we know (32) is equivalent to
(33)

abc
X

(s� a)
�
y2bc+ z2bc+ yz(b2 + c2 � a2)

�
�4S2

X
a(s� a)x2� 2

�X
xa
�2
S2:

Multiplying both sides of (33) by 8, then using 2s = a + b + c and Heron�s
formula:

(34) 16S2 = (a+ b+ c)(b+ c� a)(c+ a� b)(a+ b� c);

inequality (33) becomes

(35) 4abc
X
(b+ c� a)

�
y2bc+ z2bc+ yz(b2 + c2 � a2)

�
�

�(a+ b+ c)(b+ c� a)(c+ a� b)(a+ b� c)�
�X

a(b+ c� a)x2 +
�X

xa
�2�

� 0:

Expansion and simpli�cation give

(36) p1x
2 + p2y

2 + p3z
2 � (q1yz + q2zx+ q3xy) � 0;

where

p1 = a
�
(b+ c)a4 � 2(b+ c)(b� c)2a2 + 4abc(b� c)2 + (b� c)2(b+ c)3

�
;

p2 = b
�
(c+ a)b4 � 2(c+ a)(c� a)2b2 + 4abc(c� a)2 + (c� a)2(c+ a)3

�
;

p3 = c
�
(a+ b)c4 � 2(a+ b)(a� b)2c2 + 4abc(a� b)2 + (a� b)2(a+ b)3

�
;

q1 = 2bc(b+ c� a)
�
�
3a3 + (b+ c)a2 + a(2bc� 3b2 � 3c2)� (b+ c)(b� c)2

�
;

q2 = 2ca(c+ a� b)
�
�
3b3 + (c+ a)b2 + b(2ca� 3c2 � 3a2)� (c+ a)(c� a)2

�
;

q3 = 2ab(a+ b� c)
�
�
3c3 + (a+ b)c2 + c(2ab� 3a2 � 3b2)� (a+ b)(a� b)2

�
:

We now apply Lemma 2.5 to prove inequality (36). First, with the help of
the mathematics software for calculating, we can check the following iden-
tity:

(37) 4p1p2p3 � q1q2q3 � p1q21 � p2q22 � p3q23 = 0:

By Lemma 2.5, it remains to prove that p1 > 0; 4p2p3 � q21 � 0 and their
analogues. Because of symmetry, we only need to prove these two inequali-
ties.
To prove p1 > 0 we need to prove that

(38) Q0 � (b+ c)a4�2(b+ c)(b� c)2a2+4abc(b� c)2+(b� c)2(b+ c)3 > 0:

Putting s� a = u; s� b = v; s� c = w, then a = v+w; b = w+u; c = u+ v.
Furthermore, we can check that

Q0 � 8(v � w)2u3 + 16(v + w)(v � w)2u2 + 8(v2 � vw + w2)(v + w)2u
+8vw(v + w)(v2 + w2):(39)

Since u > 0; v > 0; w > 0 and v2 � vw + w2 > 0, inequality Q0 > 0 is valid
and p1 > 0 is proved.
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It remains to prove that 4p2p3�q21 � 0: By calculating we get the following
identities:

4p2p3 � q21 = 4abcm1k
2
1;(40)

4p3p1 � q22 = 4abcm2k
2
2;(41)

4p1p2 � q23 = 4abcm3k
2
3;(42)

where

m1 = a
3 � (b+ c)a2 � (b2 + c2 � 6bc)a+ (b+ c)(b� c)2;(43)

m2 = b
3 � (c+ a)b2 � (c2 + a2 � 6ca)b+ (c+ a)(c� a)2;(44)

m3 = c
3 � (a+ b)c2 � (a2 + b2 � 6ab)c+ (a+ b)(a� b)2;(45)

k1 = a
3 + (b+ c)a2 � a(b+ c)2 � (b+ c)(b� c)2;(46)

k2 = b
3 + (c+ a)b2 � b(c+ a)2 � (c+ a)(c� a)2;(47)

k3 = c
3 + (a+ b)c2 � c(a+ b)2 � (a+ b)(a� b)2:(48)

To show that 4p2p3 � q21 � 0, we have to prove m1 > 0. But m1 can be
rewritten as

m1 = 4(v + w)u
2 + 4(v2 + w2)u+ 4vw(v + w);

where u = s � a > 0; v = s � b > 0; w = s � c > 0. So m1 > 0 is true and
4p2p3 � q21 � 0 is proved. This completes the proof of inequality (36), and
then (33), (32), (7) are proved.
Next, we shall discuss the equality conditions in (7).
Clearly, the values of k1; k2; k3 may be zero. In fact, it is easy to prove

that one of k1; k2; k3 at most equal zero(we omit details). Hence by Lemma
2.5, we will consider two cases below to discuss the equality condition in
(36) and further that of (7).
Case 1. None of k1; k2; k3 equals zero.
First, we will prove that equality in (7) holds only when the barycentric

coordinates of P is (ak1; bk2; ck3). Then we will show that this point just is
the symmetrical point I 0 of the incentre I with respect to the circumcenter
O of 4ABC:
By the hypothesis, three strict inequalities 4p2p3 � q21 > 0; 4p3p1 � q22 >

0; 4p1p2 � q23 > 0 follow from (40), (41), (42) respectively. In addition, we
have

2p1q1 + q2q3 = 4abcu1v1w1;(49)

2p2q2 + q3q1 = 4abcu2v2w2;(50)

2p3q3 + q1q2 = 4abcu3v3w3;(51)
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where

u1 = a
3 � (b+ c)a2 � a(b2 + c2 � 6bc) + (b+ c)(b� c)2;

u2 = b
3 � (c+ a)b2 � b(c2 + a2 � 6ca) + (c+ a)(c� a)2;

u3 = c
3 � (a+ b)c2 � c(a2 + b2 � 6ab) + (a+ b)(a� b)2;

v1 = b
3 + (c� a)b2 � b(a� c)2 + (a� c)(a+ c)2;

v2 = c
3 + (a� b)c2 � c(b� a)2 + (b� a)(b+ a)2;

v3 = a
3 + (b� c)a2 � a(b� c)2 + (c� b)(c+ b)2;

w1 = c
3 + (b� a)c2 � c(a� b)2 + (a� b)(a+ b)2;

w2 = a
3 + (c� b)a2 � a(b� c)2 + (b� c)(b+ c)2;

w3 = b
3 + (a� c)b2 � b(a� c)2 + (c� a)(c+ a)2:

According to Lemma 2.5, we know that the equalities of (36) and its equiv-
alent form (33) hold if and only if xu1v1w1 = yu2v2w2 = zu3v3w3. Further,
the equality in (32) holds if and only if

x

a
u1v1w1 =

y

b
u2v2w2 =

z

c
u3v3w3:

Then by Lemma 2.3, the equality in (7) holds if and only if P coincide with

the point I 0 whose barycentric coordinates is
�

a
u1v1w1

; b
u2v2w2

; c
u3v3w3

�
. This

barycentric coordinates is much complicated. In fact it can be expressed in
a simple way. The author �nds that the following continued equality:

(52) u1v1w1k1 = u2v2w2k2 = u3v3w3k3

holds. It can easily be checked by using the mathematics software. There-
fore, the barycentric coordinates of I 0 can also be expressed by (ak1; bk2; ck3).
Now, we will prove that I 0 is the symmetrical point I 0 of the incentre I

with respect to the circumcenter O of 4ABC. We �rst prove three points
I;O; I 0 are collinear. As it is well known, the barycentric coordinates of the
incentre I and the circumentre O are (a; b; c) and�

a2(b2 + c2 � a2); b2(c2 + a2 � b2); c2(a2 + b2 � c2)
�

respectively. Hence according to Lemma 2.4, to prove I;O; I 0 to be collinear,
we need to prove that������

a b c
a2(b2 + c2 � a2) b2(c2 + a2 � b2) c2(a2 + b2 � c2)

ak1 bk2 ck3

������ = 0:
Again, by the properties of the determinant, the proof can be turned into������

1 1 1
k1 k2 k3

a(b2 + c2 � a2) b(c2 + a2 � b2) c(a2 + b2 � c2)

������ = 0;
Expending gives

k1
�
b(c2 + a2 � b2)� c(a2 + b2 � c2)

�
+k2

�
c(a2 + b2 � c2)� a(b2 + c2 � a2)

�
+k3

�
a(b2 + c2 � a2)� b(c2 + a2 � b2)

�
= 0:(53)
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Putting (46)-(48) into the left of (53), one can easily check that (53) is true.
Hence we proved that I;O; I 0 are collinear.
Successively, we will prove that I 0 is the the symmetrical point of I with

respect to the circumenter O.
In Lemma 2.1, for P = O, then we get the known formula:

(54) OM2 = R2 � yza
2 + zxb2 + xyc2

(x+ y + z)2
:

Letting M = I 0 in the above, we obtain that

(55) OI 02 = R2 � abc(ak2k3 + bk3k1 + ck1k2)
(ak1 + bk2 + ck3)2

:

By (46), (47) and (43), it is easy to get two identities:

ak1 + bk2 + ck3 = �(a+ b+ c)(b+ c� a)(c+ a� b)(a+ b� c);(56)

ak2k3 + bk3k1 + ck1k2

= (a+ b+ c)(b+ c� a)2(c+ a� b)2(a+ b� c)2;(57)

so that

(58) OI 02 = R2 � abc

a+ b+ c
:

Since a + b + c = 2s and abc = 4Rrs (r is the inradius of 4ABC), we
further get OI 02 = R2� 2Rr which is the same as the famous Euler formula
OI2 = R2�2Rr (see e.g. [22, page 279]). Thus we have OI 0 = OI. Since also
we have proved that I 0; O; I are collinear before, the point I 0 therefore must
be the symmetrical point of the incentre I with respect to the circumcenter
O.
Case 2. One of k1; k2; k3 equals zero.
There is no harm in assuming that k1 = 0. In this case, 4p2p3 � q21 = 0

follows from (40). Thus by Lemma 2.5, we know that the equality in (36)
holds if and only if x = 0; 2p2y = q1z. Further, the equality in (32) holds
only when

x = 0; 2p2
y

b
= q1

z

c
;

i.e. the barycentric coordinates of P is (0; bq1; 2p2c). Indeed, this point just
is the point with barycentric coordinates (0; bk2; ck3). Due to the homo-
geneity of barycentric coordinates (cf. [26]) it will be su¢ cient to prove that
q1 : k2 = 2p2 : k3, i.e.

(59) 2p2k2 � q1k3 = 0:

It is easy to check that 2p2k2 � q1k3 = �2ab(a+ b� c)[a3 + (3c� b)a2�
a(b+ c)2+(b� c)(3c+ b)(b+ c)]k1; which shows obviously that (59) holds

true when k1 = 0. Again, from the proof of Case 1, we see that P is still
the symmetrical point I 0 of the incentre I with respect to the circumcenter
O if k1 = 0. Therefore, the equality in (7) under the second case holds only
when P = I 0.
The point I 0 does not lie on the boundary of 4ABC under Case 1 (since

k1k2k3 6= 0). The point I 0 lies the boundary (except the vertices) of 4ABC
under Case 2. Combing with the arguments of Case 1 and Case 2, we know
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that the statements for the equality in Theorem 1.1 under these two cases
are right. The proof of Theorem 1.1 is completed.

2.2. Proof of Theorem 1.2.

Lemma 2.6. Let I be the incentre of 4ABC and let O be its circumcenter.
The symmetrical point of I with respect to O is I 0. Then the distance between
I 0 and the vertices A is given by

(60) I 0A = 2R
p
1� sinB sinC;

where R is the circumradius of 4ABC and B;C are the angles of 4ABC.

Proof. In the proof of Theorem 1.1, we have known that the barycentric
coordinates of I 0 is (ak1; bk2; ck3) (where the values of k1; k2; k3 are the same
as in (46), (47), (48)). Hence by Lemma 2.2 we have that

(61) I 0A2 =
bc(k2c+ k3b)

ak1 + bk2 + ck3
� abc(ak2k3 + bk3k1 + ck1k2)

(ak1 + bk2 + ck3)2
:

Putting k2; k3 into (61) and using (56), (57), we further get

(62) I 0A2 =
bc(4bca2 + a4 + b4 + c4 � 2b2c2 � 2c2a2 � 2a2b2)

2b2c2 + 2c2a2 + 2a2b2 � a4 � b4 � c4 :

Using the equivalent form of Heron�s formula:

(63) 16S2 = 2b2c2 + 2c2a2 + 2a2b2 � a4 � b4 � c4;
it follows that

I 0A2 =
bc(16aSR� 16S2)

16S2
=
(aR� S)bc

S
=
bc(2aR� aha)

2S

=
abc(2R� ha)

2S
= 2R(2R� ha) = 2R(2R� 2R sinB sinC)

= 4R2(1� sinB sinC):
Hence I 0A = 2R

p
1� sinB sinC is valid. This completes the proof of

Lemma 2.6.
As a straightforward important consequence of Lemma 2.1, we have that

Lemma 2.7. For any point P in the plane of 4ABC and all real numbers
x; y; z,

(64) (x+ y + z)(xPA2 + yPB2 + zPC2) � yza2 + zxb2 + xyc2;

with equality if and only if x : y : z = ~S4PBC : ~S4PCA : ~S4PAB.

The inequality (64) is called �The polar moment of the inertia inequality
of Klamkin�. This is one of the most important results for triangle geometric
inequalities. A number of triangle inequalities can be derived from it (see
e.g. [15], [16], [22])
We now prove Theorem 1.2.

Proof. Clearly, we can assume that the orientation of 4ABC is counter-
clockwise (see �gure 1), then ~S = S and we have to prove

(65) ~r1 + ~r2 + ~r3 +
2R ~Sp
S

� 2R:
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By Lemma 2.6, Lemma 2.7 and the sine rule, we obviously get the follow-
ing weighted trigonometric inequality:

(x+ y + z) [x(1� sinB sinC) + y(1� sinC sinA) + z(1� sinA sinB)](66)

� yz sin2A+ zx sin2B + xy sin2C;

with equality if and only if x : y : z = ak1 : bk2 : ck3 (k1; k2; k3 are the same
as in (46), (47), (48), respectively). That is

(x+ y + z)2 � (x+ y + z)(x sinB sinC + y sinC sinA+ z sinA sinB) +
yz sin2A+ zx sin2B + xy sin2C:

Making substitutions x! x sinA; y ! y sinB; z ! z sinC, we get

(x sinA+ y sinB + z sinC)2 � sinA sinB sinC[(x+ y + z)(x sinA
+y sinB + z sinC) + yz sinA+ zx sinB + xy sinC]:

Multiplying both sides by 4R2 and using the law of sines and the known
formula S = 2R2 sinA sinB sinC, we obtain the equivalent inequality:

(67) (xa+ yb+ zc)2 � S

R
[(x+ y + z)(xa+ yb+ zc) + yza+ zxb+ xyc];

with equality if and only if x : y : z = k1 : k2 : k3.
If we put x = ~r1; y = ~r2; z = ~r3 in (67), then using the identities a~r1 +

b~r2 + c~r3 = 2S (by (6) and hypothesis) and

a~r2 ~r3 + b~r3 ~r1 + c~r1 ~r2 = 4R ~Sp;(68)

we get

4S2 � S

R
[2S(~r1 + ~r2 + ~r3) + 4R ~Sp]:

Hence
2SR � S(~r1 + ~r2 + ~r3) + 2R ~Sp;

and a division by S produces inequality (65). By virtue of the equality
condition of (67), it is seen that the equality in (65) holds if and only if
the the barycentric coordinates of P is (ak1; bk2; ck3), i.e. P coincides with
point I 0. The proof of Theorem 1.2 is complete.

3. Some remarks

Remark 3.1. We have the following inequality similar to (8):

(69)
R22 +R

2
3 � r22 � r23
rbrc

+
R23 +R

2
1 � r23 � r21
rcra

+
R21 +R

2
2 � r21 � r32
rarb

� 2;

which is equivalent with

(70)
R22 +R

2
3 � r22 � r23
s� a +

R23 +R
2
1 � r23 � r21
s� b +

R21 +R
2
2 � r21 � r32
s� c � 2s:

The equality in (69) or (70) is the same as in (7). In fact, by using Lemma
2.2 and Lemma 2.3 we can prove the following geometric identity (we omit
details here):

(71)
X R21 � r21

hara
=
1

2

X R22 +R
2
3 � r22 � r23
rbrc

;
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where
P
denote the circle sum. Therefore, (69) can be obtained by (8) and

(71).

Remark 3.2. The point I 0 in Theorem 1.1 or Theorem 1.2 may be either
in the interior (including the boundaries, except the vertexes) of 4ABC or
outside the triangle. We have found some properties about point I 0. For
example, four points I 0; N;H; I form a parallelogram, where N is the Nagel
point, H the orthocenter and I the incenter of 4ABC respectively (see Fig-
ure 3).

Figure 3

Remark 3.3. Actually, the inequality (7) of Theorem 1.1 is a generaliza-
tion of Heron�s formula. In fact, by using (31) we can prove the following
equality:

(72) R21 � r21 = s2 � 2bc

holds when P = I 0. Thus by Theorem 1.1 we get the identity:

a(s� a)(s2 � 2bc) + b(s� b)(s2 � 2ca) + c(s� c)(s2 � 2ab) = 2S2:

Further, it is easy to obtain the Heron�s formula:

(73) S =
p
s(s� a)(s� b)(s� c):

In addition, when P = I 0 we have the following equality similar to (72):

(74) R22 +R
2
3 � r22 � r23 = 2(s� a)2

which evidently shows the equality condition in (70) is right.

Remark 3.4. The inequality (9) of Theorem 1.2 actually is equivalent to
the weighted inequality (67) and the later can also be proved by Lemma 2.5.
In addition, by inequality (9) and the known inequality (see [17]):

(75)
Sp
rp
� S

R
;

where rp is the inradious of the pedal triangle DEF of interior point P with
respect to triangle ABC and Sp is its area, it is seen that the beautiful linear
inequality

(76) r1 + r2 + r3 + 2rp � 2R

holds for any interior point P of 4ABC.
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Remark 3.5. From inequality (9) and the known inequality used in [19]
recently:

(77)
2RSp
S

� r1r2r3
r2

;

we can get the following inequality (for interior point P ):

(78) r1 + r2 + r3 +
r1r2r3
r2

� 2R;

which does not discriminate strength or weakness with (76).

Remark 3.6. If we apply geometrical transformations to Theorem 1.1 or
Theorem 1.2 or their consequences, one can obtain some new geometric
inequalities. For example, applying the isogonal transformation (see e.g.[22],
[23]) to inequality (8), we get
(79)
a(s�a)(R21r21�r22r23)+b(s�b)(R22r22�r23r21)+c(s�c)(R23r23�r21r22) � 8R2S2p ;

which holds for any point P in the plane. Applying inequality (10) and other
geometrical transformations, we can obtain the following inequalities (holds
for any interior point P of triangle ABC):

(80)
1

R1
+
1

R2
+
1

R3
+

1

2Rp
� R1R2R3
2r1r2r3R

;

(81)
1

Ra
+
1

Rb
+
1

Rc
+
1

R
� S

RSp
;

(82)
Ra +Rb +Rc +R

Rp
� R1R2R3

r1r2r3
;

where Ra; Rb; Rc are the circumradius of 4PBC;4PCA;4PAB respec-
tively.

4. Two conjectures

In [14], we have posed some conjectures for the Erdös-Mordell inequality.
Here, we present two related new conjecture again.

Conjecture 4.1. For any interior point of 4ABC, we have

(83)
R1 +R2 +R3
r1 + r2 + r3

� R

2rp
:

Conjecture 4.2. For any interior point of 4ABC, we have

(84)
R1 +R2 +R3
r1 + r2 + r3

� 2R+Rp
2r + rp

:

In passing, we have known that there is no comparison between (83) and
(84).
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