

ON SPECIAL INGARDEN MECHANICAL SYSTEM

OTILIA LUNGU and VALER NIMINET

Abstract. In this paper we give a description of a particular case of Finslerian Mechanical System, called Special Ingarden Mechanical System, endowed with a special nonlinear connection. We determine the local coefficients of the canonical metrical d-connection.

1. Introduction

Let M be an n-dimensional C^{∞} manifold. Denote by (TM, τ, M) the tangent bundle of M. We consider a function $F: TM \to R_+$ verifying the following axioms:

- i) F is a differentiable function on $TM = TM \{0\}$ and F continuous on the null section of the projection $\pi : TM \to M$;
- ii) F is positively 1- homogeneous with respect to the variables y^i ;
- iii) $\forall (x,y) \in TM$ the Hessian of F^2 with respect to y^i , with the elements $g_{ij}(x,y) = \frac{1}{2} \frac{\partial^2 F^2}{\partial y^i \partial y^j}$ is positive defined and nondegenerate.

 The space $F^n = (M, F(x,y))$ is called a Finsler space, F is the funda-

The space $F^n = (M, F(x, y))$ is called a Finsler space, F is the fundamental function and $g_{ij}(x, y)$ is the fundamental tensor field of the space F^n .

Let $F(x,y) = \alpha(x,y) + \beta(x,y)$ be a particular case of the fundamental function of the space F^n , where $\alpha(x,y) = \sqrt{a_{ij}(x)y^iy^j}$ is a Riemannian metric and $\beta(x,y) = b_i(x)y^i$ is a 1-form. If we consider N the Lorentz nonlinear connection introduced by R. Miron[9] we obtain a particular case of Finsler space called Ingarden space. Insteed of N we consider a new special nonlinear connection N^* constructed from N, a given Lorentz nonlinear connection and we define a Special Ingarden Space, denoted SI^* .

Keywords and phrases: Lorentz connection, Ingarden space, Ingarden Mechanical System

(2010) Mathematics Subject Classification: 53C60, 53B40

Received: 28.02.2013 In revised form: 2.03.2013 Accepted: 25.05.2013

We construct a 4-uple $\sum_{SI^*} = (M, F^2, N^*, Fe)$ where M is the configuration space, $F(x,y) = \alpha(x,y) + \beta(x,y)$ is the fundamental function of the Ingarden space, N^* is the special nonlinear connection and Fe are the external forces.

2. Ingarden Spaces

Let $F^n = (M, F(x, y))$ be a Finsler space with the fundamental function $F(x, y) = \alpha(x, y) + \beta(x, y)$ where $\alpha(x, y) = \sqrt{a_{ij}(x) y^i y^j}$ and $\beta(x, y) = b_i(x) y^i$; $a = a_{ij}(x) dx^i dx^j$ is a Riemannian metric on M and it gives the gravitational part of the metric F; $b_i(x)$ is an electromagnetic covector on M and $\beta(x, dx) = b_i(x) dx^i$ is the electromagnetic 1-form field on M.

We consider the integral of action of the Lagrangian $F^2(x,y)$ along a curve $c: t \in [0,1] \to c(t) \in M$:

(2.1)
$$I(c) = \int_0^1 F^2\left(x, \frac{dx}{dt}\right) dt = \int_0^1 \left[\alpha\left(x, \frac{dx}{dt}\right) + \beta\left(x, \frac{dx}{dt}\right)\right]^2 dt$$

The variational problem for I(c) leads to the Euler-Lagrange equations:

(2.2)
$$E_i(F^2) := \frac{\partial (\alpha + \beta)^2}{\partial x^i} - \frac{d}{dt} \frac{\partial (\alpha + \beta)^2}{\partial y^i} = 0, y^i = \frac{dx^i}{dt}.$$

The energy of F^2 is

(2.3)
$$\varepsilon_{F^2} = y^i \frac{\partial F^2}{\partial y^i} - F^2.$$

The covector field $E_i(F^2)$ is expressed by

(2.4)
$$E_{i}(F^{2}) = E_{i}(\alpha^{2}) + 2\alpha E_{i}(\beta) + 2\frac{d\alpha}{dt}\frac{\partial \alpha}{\partial y^{i}}$$

Theorem 2.1. The Euler-Lagrange equations (1.2) are equivalent to the Lorentz equations:

(2.5)
$$\frac{d^2x^i}{ds^2} + \gamma^i_{jk}(x)\frac{dx^j}{ds}\frac{dx^k}{ds} = \alpha \overset{\circ}{F}^i_j(x)\frac{dx^j}{ds},$$

where $F_j^i(x) = a^{is}F_{sj}(x)$ and γ_{jk}^i are the Christoffel symbols of the Riemannian metric tensor $a_{ij}(x)$.

The Euler-Lagrange equations $E_i(F^2) = 0$ determines a canonical semispray S on the total space of the tangent bundle:

(2.6)
$$S = y^{i} \frac{\partial}{\partial x^{i}} - 2G^{i} \frac{\partial}{\partial y^{i}}$$

with the coefficients

(2.7)
$$2G^{i}(x,y) = \gamma_{jk}^{i}(x) y^{j} y^{k} - \overset{\circ}{F}_{i}^{i}(x) y^{j}.$$

Now we consider the nonlinear connection N with the coefficients

(2.8)
$$N_{j}^{i} = \gamma_{jk}^{i}(x) y^{k} - F_{j}^{i}(x).$$

where $F_{j}^{i}(x) = \frac{1}{2} F_{j}^{i}(x)$.

Since the autoparallel curves of N are given by the Lorentz equations (2.5), we call it the Lorentz nonlinear connection of the metric $(\alpha + \beta)$.

The nonlinear connection N determines the horizontal distribution, denoted by N too, with the property $T_uTM = N_u \oplus V_u, \forall u \in TM, V_u$ being the natural vertical distribution on the tangent manifold TM.

The adapted basis to N is $\left(\frac{\delta}{\delta x^i}, \frac{\partial}{\partial y^i}\right)_{i=1,\dots,n}$ with

$$(2.9) \ \frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - N_{i}^{k} \frac{\partial}{\partial y^{k}} = \frac{\partial}{\partial x^{i}} - \gamma_{is}^{k} (x) y^{s} \frac{\partial}{\partial y^{k}} + F_{i}^{k} \frac{\partial}{\partial y^{k}} = \frac{\overset{\circ}{\delta}}{\delta x^{i}} + F_{i}^{k} \frac{\partial}{\partial y^{k}},$$

where

(2.10)
$$\frac{\ddot{\delta}}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - \gamma_{is}^{k}(x) y^{s} \frac{\partial}{\partial y^{k}}$$

The adapted cobasis to N is $\left(dx^{i}, \delta y^{i}\right)_{i=1,\dots,n}$ with

$$(2.11) \quad \delta y^{i} = dy^{i} + N_{j}^{i} dx^{j} = dy^{i} + \gamma_{jk}^{i}(x) y^{k} dx^{j} - F_{j}^{i} dx^{j} = \stackrel{\circ}{\delta} y^{i} - F_{j}^{i} dx^{j},$$

where

(2.12)
$$\overset{\circ}{\delta} y^i = dy^i + \gamma^i_{jk}(x) y^k dx^j$$

The weakly torsion of N is

(2.13)
$$T_{jk}^{i} = \frac{\partial N_{j}^{i}}{\partial y^{k}} - \frac{\partial N_{k}^{i}}{\partial y^{j}} = 0.$$

The integrability tensor of N is

(2.14)
$$R_{jk}^{i} = \frac{\delta N_{j}^{i}}{\delta x^{k}} - \frac{\delta N_{k}^{i}}{\delta x^{j}}.$$

Definition 1. The Finsler space $F^n = (M, F = \alpha + \beta)$ equipped with the Lorentz nonlinear connection N is called an Ingarden space. It is denoted IF^n .

The fundamental tensor g_{ij} of IF^n is given by

(2.15)
$$g_{ij} = \frac{F}{\alpha} (a_{ij} - \tilde{l}_i \tilde{l}_j) + l_i l_j$$
where $\tilde{l}_i = \frac{\partial \alpha}{\partial y^i}$, $l_i = \frac{\partial F}{\partial y^i}$, $l_i = \tilde{l}_i + b_i$.
The following results holds [9].

Theorem 2.2. There exists an unique N-metrical connection $I\Gamma(N) =$ (F_{ik}^i, C_{ik}^i) of the Ingarden space IF^n which verifies the following axioms:

i)
$$\nabla_k^H g_{ij} = 0; \ \nabla_k^V g_{ij} = 0;$$

ii)
$$T_{ik}^i = 0$$
; $S_{ik}^i = 0$.

The connection $I\Gamma(N)$ has the coefficients expressed by the generalized Christoffel symbols:

(2.16)
$$\begin{cases} F_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\delta g_{sj}}{\delta x^{k}} + \frac{\delta g_{sk}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{s}} \right) \\ C_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\partial g_{sj}}{\partial y^{k}} + \frac{\partial g_{sk}}{\partial y^{j}} - \frac{\partial g_{jk}}{\partial y^{s}} \right) \end{cases}$$

where $\frac{\delta}{\delta x^i}$ are given by (2.9).

3. Special Ingarden Spaces

Let IF^n be an Ingarden space and N the Lorenz nonlinear connection with the coefficients given by (2.11). Instead of N we now consider a new nonlinear connection $\stackrel{*}{N}$ [8] with the coefficients

(3.1)
$$N_j^i = N_j^i + \frac{F_{|j}y^i}{F},$$

where "|" denote the covariant differentiation with respect to $I\Gamma(N)$.

The nonlinear connection $\stackrel{*}{N}$ determines the horizontal distribution, denoted by $\stackrel{*}{N}$ too, with the property $T_uTM=\stackrel{*}{N_u}\oplus V_u$, $\forall u\in TM$, V_u being the natural vertical distribution on the tangent manifold TM.

The local adapted basis to the horizontal and vertical vector spaces N_u and V_u is given by $\left(\frac{\delta}{\delta x^k}, \frac{\partial}{\partial y^k}\right), k = 1, ..., n$, where

$$\begin{split} \frac{\overset{*}{\delta}}{\delta x^k} &= \frac{\partial}{\partial x^k} - \overset{*}{N_k^r} \frac{\partial}{\partial y^r} = \frac{\partial}{\partial x^k} - N_k^r \frac{\partial}{\partial y^r} - \frac{F_{|k} y^r}{F} \frac{\partial}{\partial y^r} \\ &= \frac{\delta}{\delta x^k} - \frac{F_{|k} y^r}{F} \frac{\partial}{\partial y^r} = \frac{\overset{\circ}{\delta}}{\delta x^k} + F_k^r \frac{\partial}{\partial y^r} - \frac{F_{|k} y^r}{F} \frac{\partial}{\partial y^r} \\ &= \frac{\overset{\circ}{\delta}}{\delta x^k} + \left(F_k^r - \frac{F_{|k} y^r}{F} \right) \frac{\partial}{\partial y^r} \end{split}$$

and $\frac{\mathring{\delta}}{\delta x^k}$ are given by (2.10).

The adapted cobasis to N is $\left(dx^{i}, \delta y^{i}\right)$, i = 1, ..., n with (3.3)

$$\delta y^{i} = dy^{i} + N_{j}^{i} dx^{j} = dy^{i} + N_{j}^{i} dx^{j} + \frac{F_{|j}y^{i}}{F} dx^{j}$$

$$= dy^{i} + \gamma_{jk}^{i}(x) y^{k} dx^{j} - F_{j}^{i} dx^{j} + \frac{F_{|j}y^{i}}{F} dx^{j}$$

$$= \mathring{\delta} y^{i} - \left(F_{j}^{i} - \frac{F_{|j}y^{i}}{F}\right) dx^{j}$$

where $\overset{\circ}{\delta} y^i$ are given by (2.12).

Definition 2. The Finsler space $F^n = (M, \alpha + \beta)$ equipped with the special nonlinear connection N is called a Special Ingarden space. It is denoted SI^*F^n .

Theorem 3.1. There exists an unique N- metrical connection $I\Gamma$ $\binom{*}{N} = \binom{*}{jk} \binom{*}{jk}$ of the Ingarden space IF^n which satisfies the following axioms:

i)
$$\nabla_k^H g_{ij} = 0; \ \nabla_k^V g_{ij} = 0;$$

ii)
$$T^i_{jk} = 0$$
; $S^i_{jk} = 0$.

The connection $I_{\Gamma}^*\begin{pmatrix} *\\N\end{pmatrix}$ has the coefficients expressed by the generalized Christoffel symbols (3.4)

 $\begin{cases} F_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\delta g_{sj}}{\delta x^{k}} + \frac{\delta g_{sk}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{s}} \right) \\ C_{jk}^{i} = \frac{1}{2}g^{is} \left(\frac{\partial g_{sj}}{\partial y^{k}} + \frac{\partial g_{sk}}{\partial y^{j}} - \frac{\partial g_{jk}}{\partial y^{s}} \right) \end{cases}$

where $\frac{\delta}{\delta x^i}$ are given by (3.2). From a direct calculation we get (3.5)

4. Special Ingarden Mechanical Systems

For a manifold M, that is the configuration space, let us consider the tangent bundle TM to which we refer to as the velocity space. Suppose that there is a metric $F = \alpha + \beta$ on TM and $F_i(x, y) dx^i$ is a globally defined d-covector field on the velocity space.

Definition 3. A special Ingarden Mechanical System is a 4-uple $\sum_{SI^*} = \left(M, (\alpha + \beta)^2, N, F_e\right)$ with N the special nonlinear connection (3.1) and

(4.1)
$$F_e = F^i(x, y) \frac{\partial}{\partial u^i}$$

the external forces given as a vertical vector field on TM.

One consider $F_i(x, y) = g_{ij}F^j(x, y)$ the covariant components of the external forces F_e .

Theorem 4.1. [10] For the special Ingarden mechanical system $\sum_{SI^*} = (M, (\alpha + \beta)^2, N^*, F_e)$ the following properties hold good:

i) The operator S defined by

(4.2)
$$S = y^{i} \frac{\partial}{\partial x^{i}} - \left(2G^{i} - \frac{1}{2}F^{i}\right) \frac{\partial}{\partial y^{i}}$$

is a vector field, global defined on the phase space TM.

- ii) S is a semispray which depends only on \sum_{SI^*} and it is a spray if F_e are 2-homogeneous with respect to y^i .
- iii) The integral curves of the vector field S are the evolution curves given by the Lagrange equations of \sum_{SI^*} :

$$(4.3) \qquad \frac{d^2x^i}{dt^2} + \Gamma_{jk}^*\left(x, \frac{dx}{dt}\right) \frac{dx^j}{dt} \frac{dx^k}{dt} = \frac{1}{2}F^i\left(x, \frac{dx}{dt}\right).$$

The semispray S (4.2) has the coefficients G^i expressed by

$$(4.4) 2G^{i} = 2G^{i} - \frac{1}{2}F^{i}(x,y) = \Gamma_{jk}^{i}(x,y)y^{j}y^{k} - \frac{1}{2}F^{i}(x,y).$$

Thus, the canonical nonlinear connection N of the special Ingarden mechanical system \sum_{SI^*} has the coefficients

(4.5)
$$N_j^i = \frac{\partial G^i}{\partial y^j} = N_j^i - \frac{1}{4} \frac{\partial F^i}{\partial y^j}.$$

This nonlinear connection $\stackrel{SI^*}{N}$ determines a direct decomposition of the tangent space $\stackrel{\cdot}{TM}$ into horizontal and vertical subspaces:

$$T_uTM = \overset{SI^*}{N_u} \oplus V_u, \forall u \in TM.$$

A local adapted basis to these decomposition is $\left(\frac{\delta^{SI^*}}{\delta x^i}, \frac{\partial}{\partial y^i}\right)_{i=\overline{1,n}}$ where

$$(4.6) \ \frac{\overset{SI^*}{\delta}}{\frac{\delta}{\delta x^i}} = \frac{\partial}{\partial x^i} - \overset{SI^*}{N^i_j} \frac{\partial}{\partial y^j} = \frac{\partial}{\partial x^i} - \overset{*}{N^i_j} \frac{\partial}{\partial y^j} + \frac{1}{4} \frac{\partial F^j}{\partial y^i} \frac{\partial}{\partial y^j} = \frac{\overset{*}{\delta}}{\delta x^i} + \frac{1}{4} \frac{\partial F^j}{\partial y^i} \frac{\partial}{\partial y^j}.$$

The adapted cobasis is $\left(dx^{i}, \delta^{SI^{*}} y^{i}\right)_{i=\overline{1.n}}$ with

$$(4.7) \quad \stackrel{SI^*}{\delta} y^i = dy^i + \stackrel{SI^*}{N^i_j} dx^j = dy^i + \stackrel{*}{N^i_j} dx^j - \frac{1}{4} \frac{\partial F^i}{\partial y^j} dx^j = \stackrel{*}{\delta} y^i - \frac{1}{4} \frac{\partial F^i}{\partial y^j} dx^j.$$

We determine the torsion T^i_{jk} and the curvature R^i_{jk} of the canonical connection by a direct calculation:

(4.8)
$$T_{jk}^{SI^*} = \frac{\partial N_j^i}{\partial y^k} - \frac{\partial N_k^i}{\partial y^j} = 0.$$

$$(4.9) \\ \frac{SI^*}{R^i_{jk}} = \frac{\overset{SI^*SI^*}{\delta N^i_j}}{\delta x^k} - \frac{\overset{SI^*SI^*}{\delta N^i_k}}{\delta x^j} = \overset{*}{R^i_{jk}} - \frac{1}{4} \left(\frac{\overset{*}{\delta}}{\delta x^k} \frac{\partial F^i}{\partial y^j} - \frac{\overset{*}{\delta}}{\delta x^j} \frac{\partial F^i}{\partial y^k} \right) + \frac{1}{4} \left(\frac{\partial F^j}{\partial y^k} \frac{\partial N^i_j}{\partial y^j} - \frac{\partial F^k}{\partial y^j} \frac{\partial N^i_k}{\partial y^k} \right).$$

Now we determine a canonical N- linear connection $SI^*\Gamma\begin{pmatrix} SI^*\\ N \end{pmatrix} = \begin{pmatrix} SI^* & SI^*\\ F^i_{jk}, C^i_{jk} \end{pmatrix}$, metric with respect to g_{ij} .

We denote $\overset{SI^*}{\nabla^H}$ and $\overset{SI^*}{\nabla^V}$ the h- and v- covariant derivative with respect to $SI^*\Gamma\begin{pmatrix}SI^*\\N\end{pmatrix}$:

The tensor g_{ij} is covariant with respect to $SI^*\Gamma\begin{pmatrix} SI^*\\ N \end{pmatrix}$ if and only if $\nabla^{II}_k g_{ij} = 0$ and $\nabla^{II}_k g_{ij} = 0$ and we say that $SI^*\Gamma\begin{pmatrix} SI^*\\ N \end{pmatrix}$ is a metrical N-linear connection of the mechanical system \sum_{SI^*} . The h- and v- torsions of $SI^*\Gamma\begin{pmatrix} SI^*\\ N \end{pmatrix}$ are

$$\begin{aligned} SI^* & SI^* & SI^* \\ T^i_{jk} &= F^i_{jk} - F^i_{kj} \\ & \text{and} \\ SI^* & SI^* & SI^* \\ S^i_{jk} &= C^i_{jk} - C^i_{kj}. \end{aligned}$$

Theorem 4.2. Let $\sum_{SI^*} = \left(M, (\alpha + \beta)^2, \stackrel{SI^*}{N}, F_e\right)$ be a special Ingar-

den mechanical system and N the canonical nonlinear connection of \sum_{SI^*} . There exists an unique d-connection $SI^*\Gamma\begin{pmatrix} SI^*\\ N\end{pmatrix}$ determined by the following axioms:

i)
$$\nabla_{k}^{I*} g_{ij} = 0; \nabla_{k}^{V} g_{ij} = 0;$$

$$SI^{*} SI^{*} SI^{*} = 0; S^{i} = 0$$

We call this connection the canonical metrical d-connection of \sum_{SI^*} .

Theorem 4.3. The local coefficients of the canonical metrical d-connection of \sum_{SI^*} are

$$\begin{pmatrix}
SI^* \\
F_{jk}^i = \frac{1}{2}g^{is} \begin{pmatrix}
\frac{S_{ij}^*}{\delta x^k} + \frac{S_{ij}^*}{\delta x^k} - \frac{S_{ij}^*}{\delta x^j} - \frac{\delta}{\delta x^s} \\
SI^* \\
C_{jk}^i = \frac{1}{2}g^{is} \left(\frac{\partial g_{sj}}{\partial y^k} + \frac{\partial g_{sk}}{\partial y^j} - \frac{\partial g_{jk}}{\partial y^s}\right)
\end{pmatrix}$$

In order to calculate these coefficients we take account of (3.5) and we get

(4.11)
$$\frac{\delta g_{sj}}{\delta x^k} = \nabla_k^H g_{sj} + F_{sk}^i g_{ij} + F_{jk}^i g_{si}.$$

and from (4.6) we obtain

$$\frac{\delta g_{sj}}{\delta x^k} = \nabla_k^H g_{sj} + F_{sk}^i g_{ij} + F_{jk}^i g_{si} + \frac{1}{4} \frac{\partial F^j}{\partial y^k} \frac{\partial}{\partial y^j}.$$

Now we can state

Theorem 4.4. The canonical metrical d-connection of \sum_{SI^*} has the coefficients

$$\begin{cases}
SI^* \\
F_{jk}^i = F_{jk}^i + \frac{1}{2}g^{is} \left(\nabla_k^H g_{ij} + \nabla_j^H g_{sk} - \nabla_s^H g_{jk} \right) + \frac{1}{8}g^{is} \left(\frac{\partial F^h}{\partial y^k} \frac{\partial g_{sj}}{\partial y^h} + \frac{\partial F^h}{\partial y^j} \frac{\partial g_{sk}}{\partial y^h} - \frac{\partial F^h}{\partial y^s} \frac{\partial g_{jk}}{\partial y^h} \right) \\
SI^* \\
C_{jk}^i = C_{jk}^i.
\end{cases}$$

Using the geometrical theory of the special Ingarden mechanical systems we can write the generalized Maxwell equations for the electromagnetic fields of \sum_{SI^*} .

References

- Anastasiei, M., Certain Generalizations on Finsler Metrics, Contemporary Mathematics, 1996, 61-70.
- [2] Antonneli, P.S., Ingarden, R.S. and Matsumoto, M., The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Acad. Publ. FTPH no.58, 1993
- [3] Bucataru, I., Metric Nonlinear Connections, Differential Geometry and its Applications, 35(3)(2007), 335-343.
- [4] Bao, D., Chern, S.S. and Shen, Z., An Introduction to Riemann-Finsler Geometry, Graduate Text in Math, 2000, Springer, 2000.
- [5] Lungu, O. and Niminet, V., General Randers Mechanical Systems, Scientific Studies and Research, Series Mathematics and Informatics, 22(1)(2012), 25-30.
- [6] Lungu, O. and Niminet, V., Ingarden Spaces with a Special Nonlinear Connection, Scientific Studies and Research, Series Mathematics and Informatics, 22(2)(2012), 31-38.
- [7] Nagajara, H.G., Randers Spaces with Special Nonlinear Connection, Lobachevski Journal of Mathematics, 29(1)(2008), 27-31.
- [8] Miron, R and Hassan, B.T., Variational Problem in Finsler Spaces with (α, β)-metric, Algebras Groups and Geometries, Hadronic Press, 20(2003), 285-300.
- [9] Miron, R, The Geometry of Ingarden Spaces, Rep. on Math. Phys., 54(2004), 131-147.
- [10] Miron, R, Dynamical Systems of Lagrangian and Hamiltonian Mechanical Systems, Advance Studies in Pure Mathematics, 48(2007), 309-340.
- [11] Miron, R, Lagrangian and Hamiltonian Geometries. Applications to Analytical Mechanics, Ed. Academiei Române & Ed. Fair Partners, Buc., 2011.
- [12] Miron, R, Hassan, Gravitation and electromagnetism in Finsler-Lagrange spaces with (α, β)-metrics, Tensor, N.S., 73(2011), 75-86.
- [13] Shen, Z., Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishrs, Dodrecht, 2001.

DEPARTMENT OF MATHEMATICS AND INFORMATICS UNIVERSITY "VASILE ALECSANDRI", 600115 BACĂU, ROMANIA $E\text{-}mail\ address:}$ otilia.lungu@ub.ro

DEPARTMENT OF MATHEMATICS AND INFORMATICS UNIVERSITY "VASILE ALECSANDRI", 600115 BACĂU, ROMANIA *E-mail address*: valern@ub.ro