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INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR

POLYGON AND SOME OF ITS FEATURES

NENAD U. STOJANOVIĆ

Abstract.
If above each side of a regular polygon with n sides, we construct an

isosceles polygon with k-1 equal sides we get an equilateral polygon with
N = (k�1)n equal sides and di¤erent interior angles-semi regular polygons.
Some metrical features and relations relating to the inscribed circle of the
general semi-regular equilateral polygon with N = (k � 1)n sides, and with
n; k � 3,k; n 2 N are dealt with in this paper. Furthermore, the paper
contains a proof to the theorem on geometrical construction of the semi-
regular polygon with N = (k � 1)n sides, given a radius of an inscribed
circle.

1. Introduction

Given the set of points Aj 2 E2,j = 1; 2; : : : ; n in Euclidian plane E2,
such that any three successive points do not lie on a line p and for which we
have a rule: if Aj 2 p and Aj+1 2 p for each j point Aj+2 does not belong
to the line p.

1. Polygon Pn or closed polygonal line is the union along A1A2; A2A3;
: : : ; AnAn+1; and write short

(1) Pn =

n[
j+1

AjAj+1; (n+ 1 � 1 mod n)

Points Aj are vertices, and lines AjAj+1 are sides of polygon Pn.

2. The angles on the inside of a polygon formed by each pair of adjacent
sides are angles of the polygon.
� � � � � � � � � � � � �
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3. If no pair of polygon�s sides, apart from the vertex, has no common
points, that is ,if AjAj+1\Aj+lAj+l+1 = ;; l 6= 1 polygon is simple, otherwise
it is complex. This paper deals with simple polygons only.
4. Simple polygons can be convex and non-convex. Polygon is convex

if it all lies on the same side of any of the lines AjAj+1, otherwise it is
non-convex. Polygon Pn divides plane E2 into two disjoint subsets,U and
V . Subset U is called interior, and subset V is exterior area of the polygon.
Union of polygon Pn and its interior area Un makes polygonal area Sn, which
is:

(2) Sn = Pn [ Un

5. Given polygon Pn with vertices Aj ; j = 1; 2; : : : ; n; (n+ 1 � 1 mod n)
lines of which AjAi are called polygonal diagonals if indices are not consec-
utive natural numbers, that is, j 6= i. We can draw n � 3 diagonals from
each vertex of the polygon with n number of vertices.

6. Exterior angle of the polygon Pn with vertex Aj is the angle \Av;j
with one side Aj+1Aj , and vertex Aj , and the other one is extension of the
side AjAj�1 through vertex Aj :

7. Sum of all exterior angles of the given polygon Pn is equal to multiplied
number or product of tracing around the polygons in a certain direction and
2�, that is, the rule is

(3)
nX
j=1

(\Av;j) = 2k�; k 2 Z

In which k is number of turning around the polygon in certain direction.

8. The interior angle of the polygon with vertex Aj is the angle \Au;j ; j =
1; 2; : : : : ; n for which \Au;j + \Av;j = �. That is the angle with one side
Aj�1Aj , and the other side AjAj+1. Sum of all interior angles of the polygon
is de�ned by equation

(4)
nX
j=1

\Au;j = (n� 2k)�; n 2 N; k 2 Z:

In which k is number of turning around the polygon in certain direction.

9. A regular polygon is a polygon that is equiangular (all angles are
equal in measure) and equilateral (all sides have the same length). Regular
polygon with n sides of b length is marked as P bn. The formula for interior
angles  of the regular polygon P bn with n sides is  =

(n�2)�
n . A non-convex

regular polygon is a regular star polygon.For more about polygons in [4,5,6].

10. Polygon that is either equiangular or equilateral is called semi-regular
polygon. Equilateral polygon with di¤erent angles within those sides are
called equilateral semi-regular polygons, whereas polygons that are equian-
gular and with sides di¤erent in length are called equiangular semi regular
polygons. For more about polygons in [1,2,3].
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FIGURE 1. Convex semi-regular polygon PN with N = (k � 1)n sides
constructed above the regular polygon P bn

11. If we construct a polygon Pk with (k � 1) sides, k � 3,k 2 N with
vertices Bi; i = 1; 2; : : : ; k over each side of the convex polygon Pn,n �
3,n 2 N with vertices Aj ,j = 1; 2; : : : ; n, (n + 1) � 1 mod n, that is Aj =
B1; Aj+1 = Bk, we get new polygon with N = (k � 1)n sides, (Figure 1)
marked as PN .
Here are the most important elements and terms related to constructed

polygons:

(1) Polygon Pk with vertices B1B2 : : : Bk�1Bk, B1 = Aj ; Bk = Aj+1
constructed over each side AjAj+1; j = 1; 2; : : : ; n of polygon Pn
with which it has one side in common is called edge polygon for
polygon Pn.

(2) AjB2; B2B3; : : : ; Bk�1Aj+1; j = 1; 2; : : : ; n are the sides polygon Pk.
(3) AjB2AjB3; : : : ; AjBk�1 are diagonals di; i = 1; 2; : : : ; k � 2, of the

polygon P ak drawn from the top Aj and that implies

dk�2 = AjAj+1 = b:

(4) Angles \Bu;i are interior angles of vertices Bu;i of the polygon PN
and are denoted as �i. Interior angle \Au;j of the polygon of the
vertices Aj are denoted as �j .

(5) Polygon Pk of the side a constructed over the side b of the polygon
Pn is isosceles, with (k � 1) equal sides, is denoted as P ak .

(6) � = \(di; di+1); i = 1; 2; : : : ; k � 2 denotes the angle between its two
consecutive diagonals drawn from the vertices Aj ; j = 1; 2; : : : ; n for
which it is true

(5) � = \(a; d1) = \(didi+1); i = 1; 2; : : : ; k � 3; dk�2 = b

(7) If the isosceles polygon P ak is constructed over each side of the b
regular polygon P bn with n sides, then the constructed polygon with
N = (k�1)n of equal sides is called equilateral semi-regular polygon
which is denoted as P aN .
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12. We analyzed here some metric characteristics of the general equilateral
semi-regular polygons, if side a is given, and angle is � = \(di; di+1); i =
1; 2; : : : ; (k � 2), in between the consecutive diagonals of the polygon P ak
drawn from the vertex P ak of the regular polygon P

b
n. Such semi-regular

polygon with N = (k � 1)n sides of a length and angle � de�ned in (5) we
denote as P a;�N .

13. Regular polygon P bn polygon is called corresponding regular polygon
of the semi-regular polygon P a;�N .
14. Interior angles of the semi-regular equilateral polygon is divided into

two groups
- angles at vertices Bi; i = 2; : : : ; k � 1 we denote as �,
- angles at vertices Aj ; j = 1; 2; : : : ; n we denote as �.
15. KN stands for the sum of the interior angles of the semi-regular

polygon P a;�N .

16. SAj stands for the sum of diagonals comprised by angle  and drawn
from the vertex Aj , and with "


Aj
we denote the angle between the diagonals

drawn from vertex Aj comprised by angle .
17. We denote the radius of the inscribed circle of the semi-regular poly-

gon P a;�N , with rN .

2. MAIN RESULT

Let on each side of the regular polygon P bn, be constructed polygon P
a
k ,

with (k � 1) equal sides, and let dl = AjBi; l = 1; 2; : : : ; k � 2; dk�2 =
AjAj+1 = b; j = 1; 2; : : : ; n; i = 3; 4; : : : ; k;Bk = Aj+1 diagonals drawn
from the vertex Aj ,AjAj+1 = b to the vertices Bi of the polygon P ak . The
following lemma is valid for interior angles at vertices Bi; Bk = Aj+1 of
triangle 4AjBi�1Bi determined by diagonals di. For more about in [7].

Lemma 2.1. Ratio of values of interior angles 4AjBi�1Bi; i = 3; 4; : : : ; k
at vertex Bi of the base AjBi = di�2 from the given angle AjBi = di�2 � is
de�ned by relation \Bi = (i� 2)�.
Proof. The proof is done by induction on i, (i � 3); i 2 N. Let us check
this assertion for i = 4 because for i = 3 the claim is obvious because the
triangle erected on the sides of the regular polygon is isosceles and angles at
the base b are equal as angle �. If i = 4 and isosceles rectangle is constructed
on side b of the regular polygon P bn (Figure 2) with vertices A1B2B3B4, and
B4 = A2 where A1A2 = b side of the regular polygon.
Diagonals constructed from the vertex A1 divide polygon A1B2B3B4, into

triangles 4A1B2B3 and 4A1B3B4. According to the de�nition of the angle
� we have:

\B2A1B3 = \B2B3A1 = \B3A1B4 = �
Intersection of the centerline of the triangle�s base 4A1B2B3 i A1B4 = b is
point S1. Since A1B2 = B2B3 = a, a and construction of the point S1 leads
to conclusion that �A1S1B2B3 is a rhombus with side a.
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FIGURE 2. Rectangle A1B2B3B4

Since B3S1 = B3B4 = a a triangle 4B3S1B4 is isosceles, and its interior
angle at vertex S1 is exterior angle of the triangle 4A1B3S1, thus \S1 = 2�,
as well as \B4 = 2�. Let us presume that the claim is valid for an arbitrary
integer (p�1); (p � 4), p 2 N, that is i = (p�1) interior angle of the triangle
4AjBp�2Bp�1 at the vertex Bp�1 has value \Bp�1 = (p� 3)�.
Let us show now that this ascertain is true for integer p, that is for

i = p. Also, interior angle of the triangle4AjBp�1Bp at vertex Bp has value
\Bp = (p � 2)�. Let us note �AjBp�2Bp�1Bp which is split into triangles
4AjBp�2Bp�1 and 4AjBp�1Bp by diagonal dp�3, and that \Bu;p�1 = (p�
3)� according to presumption (Figure 3).

FIGURE 3. Rectangle AjBp�2Bp�1Bp

Since interior angles of triangles are congruent at vertex Aj , by de�nition
of angle �, and Bp�2Bp�1 = Bp�1Bp = a, it is easily proven that there is
point S such that triangle 4SBp�1Bp is isosceles triangle (Figure 3.), and
rectangle �AjBp�2Bp�1S is rectangle with perpendicular diagonals.
Congruence of triangles 4AjBp�2Bp�1 ' 4AjBp�1S leads us to conclu-

sion that

\AjBp�1S = (p� 3)�:
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Angle at vertex S is the exterior angle of triangle 4AjBp�2Bp�1. And thus
we have

\S = � + (p� 3)� = (p� 2)�:
Since triangle SBp�1Bp is isosceles, \Bp = (p � 2)� which we were sup-

posed to prove. So, for each i 2 N,i � 3 interior angle of triangle4AjBi�1Bi
at vertex Bi is \Bi = (i� 2)�. �

FIGURE 4. Isosceles polygon P ak constructed on side b of the regular
polygon P bn

Lemma 2.2. Semi regular equilateral polygon P a;�(k�1)n with given side a and
angle � de�ned with (5), has n interior angles equal to an that angle

(6) � =
(n� 2)�

n
+ 2(k � 2)�

and (k � 2)n interior angles equal to an that angle

(7) � = � � 2�; � > 0; k� 3; n � 3; k; n 2 N

Proof. Using �gure 4 and results of lemma 2.1 it is easily proven that
polygon P ak constructed on side b of the regular polygon P

b
n has (k � 2)

interior angles with value � � 2�, and which are at the same time interior
angles of the semi-regular polygon P aN ; N = (k � 1)n: So indeed, for k = 3
the constructed polygon Pk is isosceles triangle with interior angle at vertex
B2 = ��2�, and for k = 4 constructed polygon is isosceles rectangle (Figure
2). That rectangle is drawn by diagonal d1 from vertex Aj ,j = 1; 2; : : : ; n,
B1 � A1,B4 � Aj+1 and AjAj+1 = b split into triangles AjB2B3 and
AjB3Aj+1 with interior angles at vertices \B2 = \B3 = ��2�. Similarly it
is proven that for every rectangle AjBi�2Bi�1Bi; i = 4; 5; : : : ; k; (B1 = Aj ;
Bk = Aj+1, AjAj+1 = b) and the value of its vertex Bi�1,

\Bi�1 = (i� 3)� + � � [(i� 2)� + �] = � � 2�:
So, in every isosceles polygon P ak there k � 2 interior angles with measure
� � 2� (Figure 4.). �
Since isosceles polygon P ak , is constructed on each side of regular polygon

P bn, it follows that equilateral semi-regular polygon P
a
N has total of (k� 2)n

angles, which we were supposed to prove.
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When interior angle of the semi-regular equilateral polygon at vertex Aj ;
j = 1; 2; : : : ; n is equal to sum of interior angle of the regular polygon P bn and
double value of the interior angle of the polygon P ak at vertex Bk, (Lemma
2.1) is valid

\Au;j = � =
(n� 2)�

n
+ 2(k � 2)�

which we were supposed to prove.
Condition of convexity of the semi-regular equilateral polygon P a;�N and

the values of its angle � is given in the theorem.

Theorem 2.1. Equilateral semi-regular polygon P a;�N ,N = (k�1)n is convex
if the following is true for the angle �

(8) � 2
�
0;

�

(k � 2)n

�
k; n 2 N; n; k � 3:

Proof. Let us write values of the interior angles of the semi-regular polygon
P a;�N de�ned by relations(6),(7) in the form of linear functions

(9) f(�) =
(n� 2)�

n
+ 2(k � 2)�; g(�) = � � 2�; _k; n2 N; _k; n� 3:

Since the polygon is convex if all its interior angles are smaller than �, to

prove the theorem it is enough to show that for 8� 2
�
0; �
(k�2)n

�
all interior

angles of the semi-regular polygon P a;�N are smaller than �.
Indeed, from this relation � = g(�) = ��2� follows that � = 0 for � = �

2 ,
(Figure 5). On the basis of this and demands � > 0 and � > 0, we �nd that
�2 (0; �) and 0 < � < �

2 , and thus we have

� 2
�
0;

�

(k � 2)n

�
; k � 3:

It is similar for interior angles equal to angle �, (Figure 5). If we multiply
the inequality 0 < � < �

(k�2)n with 2(k� 2), and
(n�2)�
n then add to the left

and right side , we get the inequality

(n� 2)�
n

<
(n� 2)�

n
+ 2(k � 2)� < 2�

n
+
(n� 2)�

n
,

(n� 2)�
n

< � < �;) � 2
�
(n� 2)�

n
; �

�

for � 2
�
0; �
(k�2)n

�
; k � 3:
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FIGURE 5. Semi-regular polygon and convexity

So, for every � 2
�
0; �
(k�2)n

�
interior angles of the semi-regular polygon

P a;�N are smaller than �. That is, semi-regular equilateral polygon P a;�N is

convex for � 2
�
0; �
(k�2)n

�
: �

Values of the interior angles of the convex semi-regular equilateral polygon
P a;�N depend on the interior angle of the corresponding regular polygon  =
(n�2)�
n as well as the angle �. Which means that the following theorem is

true:

Corrolary 2.1. Convex semi-regular equilateral polygon P a;�N is regular for
� = �

(k�1)n ; k; n 2 N; n; k � 3; � > 0 and the values of its interior angles are
given in the relation

(10) � = � =
(nk � n� 2)�
n(k � 1) :

Proof. According to the de�nition of the regular polygon, its every angle
has to be equal, thus from � = � and the relation (6),(7) we have the
equation

(n� 2)�
n

+ 2(k � 2)� = � � 2�

out of which we �nd out that the sought value of the angle is � = �
(k�1)n for

which the semi-regular equilateral polygon P a;�N is regular. On this basis we
�nd that the value of the interior angles is

� = � =
(nk � n� 2)�
n(k � 1) :

�
The text further continues with the presentation of some of the results

regarding the inscribed circle of the semi-regular polygon and the geometri-
cal construction of a convex semi-regular polygon with a given radius of the
inscribed circle.
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Theorem 2.2. Out of all convex equilateral semi-regular polygons with P a;�N ;

N = (k� 1)n sides constructed above the regular polygon P bn with n sides, a
circle may be inscribed only if k = 3,8n � 3; n 2 N:

Proof. The proof is given through two stages. Firstly, let us prove that a
circle may be inscribed for P a;�(k�1)n for k = 3 while it may not be possible

for P a;�(k�1)n with k > 3,n � 3; n 2 N, to have an inscribed circle.
1. Let us presume that a semi-regular polygon P a;�(k�1)n if k = 3,n � 3; n 2

N has an inscribed circle C(O; r) (Figure.6). Let us prove that each side
of the semi-regular polygon P a;�2n , optional sides a and angle � = \(a; b)
to which it is convex, and b side of the regular polygon above which it
is constructed are all tangent to such a circle. Let A1B1A2B2 : : : AnBn be
vertices, and \Ai = � = (n�2)�

n +2�; i = 1; 2; : : : ; n interior angles to vertices
Ai, and \Bi = � = � � 2�,i = 1; 2; : : : ; n interior angles to vertices Bi of
semi-regular polygon P a;�2n . Let us mark the center of inscribed circle C(O; r)
with the mark O. If each vertex of the semi-regular polygon P a;�2n is joined
with the center of the inscribed circle O there can be observed the following
triangles:

4A1OB1;4B1OA2; : : : ;4AnOBn;4BnOA1

for which the following is applicable:
a) A1B1 = A2B2 = � � � = AnBn = BnA1 = a side of the semi-regular

polygon,
b) \OA1B1 = \OA2B2 = � � � = \OAnBn = �

2

c) \OB1A2 = \OB2A3 = � � � = \OBnA1 = �
2 .

Thus, we may conclude that they are mutually congruent. Let us observe
one of those triangles, e.g. 4A1OB1. Let us mark its height from the point
O to side a = A1B1 with h1 while observing the said height to be equal to
the radius of the inscribed circle h1 = r.

FIGURE 6. The Radius of the Inscribed Circle - Apothem
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The congruency of the said triangles implies the congruency in their sur-
faces. If we take that Pi = a _hi

2 is surface of triangles 4AiOBi; i = 1; 2; : : : ; n
that is, of triangle 4BiOAi+1,i = 1; 2; : : : ; n i n + 1 � 1 mod n with hi
being the height from vertex O to side a, then, from the equality in their
surfaces, and after shortening the equation it follows that

(11) h1 = h2 = � � � = hn = r
From this equation we may conclude that circle C(O; r) is tangent to each
side of the semi-regular polygon P a;�2n i.e. it is inscribed to that semi-regular
polygon (Figure 6).
2. Given that for k > 3; k 2 N; n � 3; n 2 N for semi-regular polygon

P a;�(k�1)n constructed above regular polygon P
b
n with n sides, there is circle

C(O; r) inscribed with its center at point O and with radius r. By the
de�nition of the construction of a semi-regular polygon there is an isosceles
polygon P ak of side a constructed above each side b of regular polygon P

b
n.

If the vertices of the semi-regular polygon side a become joined with point
O the polygon shall become divided into two classes of mutually congruent
triangles in reference to the interior angles along the base side equal to side
a.
To one class of triangles belong the following:

4OAiBj1;4OB
j
k�1Ai+1; i; j = 1; 2; : : : ; n;n+ 1 � 1 mod n

which have their interior angle along vertex \Ai = �
2 , and interior angle

with vertex \Bj = �
2 , and base AiBj equal to side a of the semi-regular

polygon (Figure 6).
To the other class of triangles belong the isosceles triangles 4OBjpBjp+1,

p = 1; 2; : : : ; k � 3, which have their angles along BpBp+1 = a equal to �
2 .

From the congruence of the �rst class triangles follows the equality in
their heights ham; m = 1; 2; : : : ; 2n to base a, i.e. the following is applicable:

ha1 = h
a
2 = � � � = ha2n = r1

with r1 being the inscribed circle radius.
Similarly, from the congruence of the second class triangles follows the

equality in their heights Ha
t ; t = 1; 2; : : : ; n(k�3) to base a, i.e. the following

is applicable:

(12) Ha
1 = H

a
2 = � � � = Ha

n(k�3) = r2

with r2 being the inscribed circle radius. Since pursuant to presumption r1 =
r2 = r µwhat would only be possible if the �rst class triangles were congruent
to the second class triangles, and in that case this would be applicable:
�
2 =

�
2 ) � = �, i.e. meaning that polygon P a;�(k�1)n is regular, what in

turn is opposite to the presumption that it is semi-regular. Therefore, circle
C(O; r) is not an inscribed one to the semi-regular polygon since it is not
tangent to each side of the polygon , i.e. it is tangent either to base a of the
�rst class triangle or base a of the second class triangle.
Based on the presented proof it follows that there may not be inscribed a

circle to a semi-regular equilateral polygon P a;�(k�1)n with k > 3,n � 3; n 2 N.
�
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Theorem 2.3. Radius of the inscribed circle of the equilateral semi-regular
polygon P a;�(k�1)n k; n � 3; n 2 N; which does not have three consecutive
vertices each with its corresponding interior angle equal to angle � � 2� is
determined through a relation

(13) r(k�1)n = a
cos � cos(�n � (k � 2)�)
sin(�n � (k � 3)�)

Proof. Let there be vertex A1 between the verticals constructed from cen-
ter O of the inscribed circle to two neighbouring sides of the semi-regular
polygon P a;�(k�1)n, and let there be an interior angle � as de�ned in a relation
(6) corresponding to this vertex A1, and let there be neighbouring vertices
B1 and B2 with their corresponding interior angles � = � � 2�.
Now, let us observe the equiangular triangles 4OB1M;4OA1M with

OM = r (Figure 7).

FIGURE 7. Radius of the Inscribed Circle

It is obvious from the equiangular triangle 4OA1M that tg�2 =
r
a�y ,

giving r = (a� y)tg�2 .
Similarly, from equiangular triangle 4OB1M tg �2 =

r
y , giving y =

r

tg �
2

.

If we replace this and insert it into the �rst equation we get the following:

r

tg�2
+

r

tg �2
= a

and out of which we �nd the following:

r

 
1

tg�2
+

1

tg �2

!
= a, r =

a

cot�2 + cot
�
2
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Since cot�2 = tg(
�
n � (k � 2)�) and cot

�
2 = tg� from the previous equation,

after the processing and shortening of the equation we get sought equation:

r(k�1)n =
a cos �cos(�n � (k � 2)�)
sin(�n � (k � 3)�)

� which needed to be proven in the �rst place. �

Corrolary 2.2. The radius of the inscribed circle of the semi-regular polygon
P a;�2n is given in relation.

(14) r2n = a
cos � cos(�n � �)

sin �n

Proof. From the relation (13) for k = 3 we get the sought relation. �

Theorem 2.4. There is no convex equilateral semi-regular polygon P a;�N with
three consecutive vertices each with their corresponding interior angles equal
to angle � = � � 2�, which may have a circle inscribed.

Proof. Let us presume quite the opposite to this, i.e., that there is a semi-
regular polygon P a;�n(k�1) with the inscribed circle C(O; r) and that there is a
vertex Bj+1 with its corresponding interior angle � = � � 2� , between the
verticals constructed from the center O of the inscribed circle onto the two
neighboring sides. Let its neighboring vertices Bj and Bj+2 correspond the
interior angles � (Figure 7.). Then, from the equiangular triangles 4OBjK,
4OKBj+1 we �nd that the other relation for the radius of the inscribed
circle would be as follows:

(15) r(k�1)n =
a

2
cot �

Since the equations (13) and (15) represent the radius of inscribed circle
C(O; r), with their processing, equaling and shortening with a, we get the
following equation:

cos �cos(�n � (k � 2)�)
sin(�n � (k � 3)�)

=
1

2
cot �

With a presumption that sin � 6= 0) � 6= m�;m 2 Z and

sin(
�

n
� (k � 3)�) 6= 0, �

n
� (k � 3)� 6= l�; l 2 Z)

� 6= (1� n � l)�
n(k � 3) ; k > 3; n; k 2 N

as well as with the condition of convexity of the semi-regular polygon (The-
orem 2.1), this equation is then transformed into the form

2 sin � cos �cos(
�

n
� (k � 2)�) = sin(

�

n
� (k � 3)�)cos � ,

cos � = 0 _ 2 sin �cos(�
n
� (k � 2)�) = 0:

From the equation cos� = 0 we �nd that the � = (2l+1)�
2 , l 2 Z is the

solution. This solution does not meet the condition of convexity of the
semi-regular polygon, not even for one whole number l 2 Z.
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From the second equation, being that

2 sin �cos(
�

n
� (k � 2)�) = sin(�

n
� (k � 1)�) + sin(�

n
� (k � 3)�)

we have the following

sin(
�

n
� (k � 1)�) = 0:

Here we �nd that � 6= (1�nl)�
n(k�1) , l 2 Z, ; k � 3, n; k 2 N. The only value

of the angle � which meets the condition of convexity is the one with l = 0,
and then � = �

n(k�1) . Since with such value of the angle � polygon P
a;�
(k�1)n

is regular, it follows that there is no semi-regular polygon which has three
consecutive vertices with their corresponding interior angles equal to the
angle � � 2� such that it can be inscribed a circle. �

FIGURE 8. A circle may be inscribed to the equilateral semi-regular
dodecagon if k = 3,n = 6.

Example 1. Examples of semi-regular polygon with inscribed circles;
a) For k = 3; n = 6 equilateral semi-regular dodecagon which may be

inscribed a circle. (Figure 8).
b) For k = 5; n = 3 (Figure 9) and for k = 4; n = 4 (Figure 10),equilateral

semi-regular dodecagon which may not be inscribed a circle. As an example,
the angle value of � = 10� has been chosen.
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FIGURE 9. A circle may not be inscribed to the equilateral dodecagon
with k = 5; n = 3

FIGURE 10. A circle may not be inscribed to the equilateral dodecagon
with k = 4,n = 4.
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Theorem 2.5. The ratio of surface P2n of the semi-regular polygon P
a;�
2n

and the product of multiplication of its side a and the radius of inscribed
circle r is equal to the number of sides n of the regular polygon above which
it has been constructed, i.e.

(16)
P2n
ar

= n

Proof. From the equation for surface of the semi-regular polygon P a2n

P2n =
na2 cos �cos(�n � �)

sin �n
and the formula for the radius of the inscribed circle

r = r2n =
a cos � cos(�n � �)

sin �n
we have the following:

P2n = na

 
a cos �cos(�n � �)

sin �n

!
= anr ) P2n

ar
= n

with n being the number of sides to the regular polygon above which a
semi-regular polygon P a2n has been constructed. �
Proposition 2.1. If the inscribed circle of semi-regular polygon P a2n P is a
unit circle, then the ratio of the numerical value of the polygon surface and
polygon side is equal to the number of sides n of the corresponding regular
polygon above which it has been constructed.

Proof. It follows from (16), if r=1, i.e. P2n
a = n. The following theo-

rem deals with the equilateral semi-regular polygons with the inscribed unit
circle. �
Theorem 2.6. There is no semi-regular equilateral polygon P a;�2n with the
inscribed unit circle and the side a and the whole number length, i.e. such
that a 2 Z

Proof. We have shown (Corollary 2.2) that the radius of the inscribed circle
is given through a relation

r2n = a
cos � cos(�n � �)

sin �n
out of which, for r = 1, after the relation processing and shortening, we �nd
that the length of a side of a semi-regular polygon P a;�2n is determined with

(17) a =
sin �n

cos � cos(�n � �)
:

If we use that what has been shown for the convex semi-regular equilateral
polygons which may be inscribed a circle, that it is applicable that k =
3; n � 3; n 2 N and � 2 (0; �n) and that sin� 2 Q, � = m�

2 ;m 2 Z or � =
�
6 (6l�1); l 2 Z, as well as that for such values of angle �, sin� 2 (0;�1;�

1
2)

we have the following:

sin�n, �

n
=
m�

2
;m 2 Z _ �

n
=
�

6
(6l � 1); l 2 Z
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From the �rst equation we get that n = 2
m , wherefrom n 2 N, only form = 1

and m = 2. These values do not meet the condition that n � 3.
From the second equation �

n =
�
6 (6l � 1) we �nd that n =

6
6l�1 and that

it represents a natural number n = 6 only for l = 0. For that value there is
a sin�6 =

1
2 . Should we replace that value in (17) we obtain the following:

a =
1

2cos � cos(�6 � �)
:

Since 2 cos � cos(�6 � �) = cos(2� � �
6 ) + cos(

�
6 ) the following sequence of

inequation is applicable:

p
3 < cos(2� � �

6
) +

p
3

2
<
2 +

p
3

2
)

2

2 +
p
3

<
1

p
3
2 + cos(2� �

�
6 )
<

p
3

3
,

2

2 +
p
3

< a <

p
3

3
)

4� 2
p
3 < a <

p
3

3

the length of side a is not a whole number, what is exactly that what needed
to be proven. �
A geometrical construction of the semi-regular polygon which may be

inscribed a circle is given within the following theorem.

Theorem 2.7. For a given radius r of the inscribed circle and angle � as
de�ned in (5) there is an equilateral semi-regular polygon P r;�N , with N =
(k � 1)n sides for k = 3; n � 3,n 2 N which which is de�ned with those
elements and which may be geometrically constructed.

Proof. Let us presume that the construction of a such semi-regular polygon
P r;�2n is possible, and that it is presented in Figure 11. Let C(O; r) be the
inscribed circle with its center at point O and with radius OK = r. We
have already shown (Theorem 2.2) that out of all semi-regular polygons
P a;�(k�1)n a circle may be inscribed only if k = 3. Let A1B1A2B2 : : : AnBn
be the vertices of a semi-regular polygon constructed above the sides of a
regular polygon with vertices A1A2 : : : An, and let neighboring vertices Ai
i Bi ,i = 1; 2; : : : : n have their corresponding interior angles immediately
to the vertices in the following sequence: to vertices Ai correspond angles
� = (n�2)�

n + 2�, and to vertices Bi correspond angles � = � � 2�. Let us
take randomly two consecutive vertices of the semi-regular polygon. For the
right-angled triangles the following is applicable:
1: For4OKA1 it is: \A1 = �

2 =
(n�2)�
2n +�, \O = �

n��,\K = �
2 ,OK = r

2: For triangle4OKB1 it is: OK = r,\K = �
2 ,\B1 = � � 2� and \O = �

(Figure 11).
Based on the given elements r and � we can construct the right-angled

triangle 4OKB1. The intersection of straight line p through points B1;K
with the angle side \O = �

n�� (which may be constructed depending on the
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number of n sides of the appropriate regular polygon) determines vertex A1
of right-angled triangle 4OKA1. It is with this that we have constructed
the side a = B1A1 of the semi-regular polygon. If we intersect a tangent tA1
from vertex A1 constructed onto circle C(O; r) with circle C(A1; a) we get
vertex B2. If in that vertex we construct a tangent onto an inscribed circle
C(O; r) the intersection of such tangent and circle C(B2) determines vertex
C(B2). If we proceed further on in the same manner, we may get all the
other vertices of the semi-regular equilateral polygon P r;�2n .

FIGURE 11. Construction of equilateral dodecagon with a given radius of
inscribed circle r and angle �

Construction description: Let there be given radius r and angle �.
1. We construct a right-angled triangle 4OKB1 with the following given

elements:

OK = r;\K =
�

2
;\O = �

2. We construct a circle C(O; r),OK = r as an inscribed circle of a semi-
regular polygon P r;�2n .
3. We construct an angle in center O,\O = �

n � �, and then construct
a right-angled triangle 4OKA1, the construction of which determines side
a = B1A1of the semi-regular polygon.
4.We construct a tangent from vertex A1 to circle C(O; r) and then we

construct vertex B2, in the following manner C(A1; B1A1 = a) \ C(O; r).
5. If we repeat the previous procedure this time from vertex B2 we then

get vertex A2. We then proceed with the same procedure to construct all
other vertices. The example above (Figure 12) presents a construction of
the semi-regular P �;r6 with a given radius r = 2cm of inscribed circle and
� = 15�.
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FIGURE 12. Construction P �;r6 ; r = 2:5cm; � = 15�
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