# INSCRIBED CIRCLE OF GENERAL SEMI-REGULAR POLYGON AND SOME OF ITS FEATURES 

NENAD U. STOJANOVIĆ


#### Abstract

. If above each side of a regular polygon with $n$ sides, we construct an isosceles polygon with k -1 equal sides we get an equilateral polygon with $N=(k-1) n$ equal sides and different interior angles-semi regular polygons. Some metrical features and relations relating to the inscribed circle of the general semi-regular equilateral polygon with $N=(k-1) n$ sides, and with $n, k \geq 3, k, n \in \mathbf{N}$ are dealt with in this paper. Furthermore, the paper contains a proof to the theorem on geometrical construction of the semiregular polygon with $N=(k-1) n$ sides, given a radius of an inscribed circle.


## 1. Introduction

Given the set of points $A_{j} \in E^{2}, j=1,2, \ldots, n$ in Euclidian plane $E^{2}$, such that any three successive points do not lie on a line $p$ and for which we have a rule: if $A_{j} \in p$ and $A_{j+1} \in p$ for each $j$ point $A_{j+2}$ does not belong to the line $p$.

1. Polygon $P_{n}$ or closed polygonal line is the union along $A_{1} A_{2}, A_{2} A_{3}$, $\ldots, A_{n} A_{n+1}$, and write short

$$
\begin{equation*}
P_{n}=\bigcup_{j+1}^{n} A_{j} A_{j+1},(n+1 \equiv 1 \quad \bmod n) \tag{1}
\end{equation*}
$$

Points $A_{j}$ are vertices, and lines $A_{j} A_{j+1}$ are sides of polygon $P_{n}$.
2. The angles on the inside of a polygon formed by each pair of adjacent sides are angles of the polygon.

Keywords and phrases: semi-regular polygons, polygons, inscribed circle radius
(2010)Mathematics Subject Classification: 51M04, 51M25, 51M30

Received: 23.08.2012. In revised form: 13.09.2012. Accepted: 23.09.2012.
3. If no pair of polygon's sides, apart from the vertex, has no common points, that is , if $A_{j} A_{j+1} \cap A_{j+l} A_{j+l+1}=\emptyset, l \neq 1$ polygon is simple, otherwise it is complex. This paper deals with simple polygons only.
4. Simple polygons can be convex and non-convex. Polygon is convex if it all lies on the same side of any of the lines $A_{j} A_{j+1}$, otherwise it is non-convex. Polygon $P_{n}$ divides plane $E^{2}$ into two disjoint subsets, $U$ and $V$. Subset $U$ is called interior, and subset $V$ is exterior area of the polygon. Union of polygon $P_{n}$ and its interior area $U_{n}$ makes polygonal area $S_{n}$, which is:

$$
\begin{equation*}
S_{n}=P_{n} \cup U_{n} \tag{2}
\end{equation*}
$$

5. Given polygon $P_{n}$ with vertices $A_{j}, j=1,2, \ldots, n,(n+1 \equiv 1 \bmod n)$ lines of which $A_{j} A_{i}$ are called polygonal diagonals if indices are not consecutive natural numbers, that is, $j \neq i$. We can draw $n-3$ diagonals from each vertex of the polygon with $n$ number of vertices.
6. Exterior angle of the polygon $P_{n}$ with vertex $A_{j}$ is the angle $\angle A_{v, j}$ with one side $A_{j+1} A_{j}$, and vertex $A_{j}$, and the other one is extension of the side $A_{j} A_{j-1}$ through vertex $A_{j}$.
7. Sum of all exterior angles of the given polygon $P_{n}$ is equal to multiplied number or product of tracing around the polygons in a certain direction and $2 \pi$, that is, the rule is

$$
\begin{equation*}
\sum_{j=1}^{n}\left(\angle A_{v, j}\right)=2 k \pi, k \in \mathbb{Z} \tag{3}
\end{equation*}
$$

In which $k$ is number of turning around the polygon in certain direction.
8. The interior angle of the polygon with vertex $A_{j}$ is the angle $\angle A_{u, j}, j=$ $1,2, \ldots, n$ for which $\angle A_{u, j}+\angle A_{v, j}=\pi$. That is the angle with one side $A_{j-1} A_{j}$, and the other side $A_{j} A_{j+1}$. Sum of all interior angles of the polygon is defined by equation

$$
\begin{equation*}
\sum_{j=1}^{n} \angle A_{u, j}=(n-2 k) \pi, n \in \mathbb{N}, k \in \mathbb{Z} \tag{4}
\end{equation*}
$$

In which $k$ is number of turning around the polygon in certain direction.
9. A regular polygon is a polygon that is equiangular (all angles are equal in measure) and equilateral (all sides have the same length). Regular polygon with $n$ sides of $b$ length is marked as $P_{n}^{b}$. The formula for interior angles $\gamma$ of the regular polygon $P_{n}^{b}$ with $n$ sides is $\gamma=\frac{(n-2) \pi}{n}$. A non-convex regular polygon is a regular star polygon.For more about polygons in [4,5,6].
10. Polygon that is either equiangular or equilateral is called semi-regular polygon. Equilateral polygon with different angles within those sides are called equilateral semi-regular polygons, whereas polygons that are equiangular and with sides different in length are called equiangular semi regular polygons. For more about polygons in [1,2,3].


FIGURE 1. Convex semi-regular polygon $P_{N}$ with $N=(k-1) n$ sides constructed above the regular polygon $P_{n}^{b}$
11. If we construct a polygon $P_{k}$ with $(k-1)$ sides, $k \geq 3, k \in \mathbb{N}$ with vertices $B_{i}, i=1,2, \ldots, k$ over each side of the convex polygon $P_{n}, n \geq$ $3, n \in \mathbb{N}$ with vertices $A_{j}, j=1,2, \ldots, n,(n+1) \equiv 1 \bmod n$, that is $A_{j}=$ $B_{1}, A_{j+1}=B_{k}$, we get new polygon with $N=(k-1) n$ sides, (Figure 1) marked as $P_{N}$.

Here are the most important elements and terms related to constructed polygons:
(1) Polygon $P_{k}$ with vertices $B_{1} B_{2} \ldots B_{k-1} B_{k}, B_{1}=A_{j}, B_{k}=A_{j+1}$ constructed over each side $A_{j} A_{j+1}, j=1,2, \ldots, n$ of polygon $P_{n}$ with which it has one side in common is called edge polygon for polygon $P_{n}$.
(2) $A_{j} B_{2}, B_{2} B_{3}, \ldots, B_{k-1} A_{j+1}, j=1,2, \ldots, n$ are the sides polygon $P_{k}$.
(3) $A_{j} B_{2} A_{j} B_{3}, \ldots, A_{j} B_{k-1}$ are diagonals $d_{i}, i=1,2, \ldots, k-2$, of the polygon $P_{k}^{a}$ drawn from the top $A_{j}$ and that implies

$$
d_{k-2}=A_{j} A_{j+1}=b
$$

(4) Angles $\angle B_{u, i}$ are interior angles of vertices $B_{u, i}$ of the polygon $P_{N}$ and are denoted as $\beta_{i}$. Interior angle $\angle A_{u, j}$ of the polygon of the vertices $A_{j}$ are denoted as $\alpha_{j}$.
(5) Polygon $P_{k}$ of the side $a$ constructed over the side $b$ of the polygon $P_{n}$ is isosceles, with $(k-1)$ equal sides, is denoted as $P_{k}^{a}$.
(6) $\delta=\angle\left(d_{i}, d_{i+1}\right), i=1,2, \ldots, k-2$ denotes the angle between its two consecutive diagonals drawn from the vertices $A_{j}, j=1,2, \ldots, n$ for which it is true

$$
\begin{equation*}
\delta=\angle\left(a, d_{1}\right)=\angle\left(d_{i} d_{i+1}\right), i=1,2, \ldots, k-3, d_{k-2}=b \tag{5}
\end{equation*}
$$

(7) If the isosceles polygon $P_{k}^{a}$ is constructed over each side of the $b$ regular polygon $P_{n}^{b}$ with $n$ sides, then the constructed polygon with $N=(k-1) n$ of equal sides is called equilateral semi-regular polygon which is denoted as $P_{N}^{a}$.
12. We analyzed here some metric characteristics of the general equilateral semi-regular polygons, if side $a$ is given, and angle is $\delta=\angle\left(d_{i}, d_{i+1}\right), i=$ $1,2, \ldots,(k-2)$, in between the consecutive diagonals of the polygon $P_{k}^{a}$ drawn from the vertex $P_{k}^{a}$ of the regular polygon $P_{n}^{b}$. Such semi-regular polygon with $N=(k-1) n$ sides of $a$ length and angle $\delta$ defined in (5) we denote as $P_{N}^{a, \delta}$.
13. Regular polygon $P_{n}^{b}$ polygon is called corresponding regular polygon of the semi-regular polygon $P_{N}^{a, \delta}$.
14. Interior angles of the semi-regular equilateral polygon is divided into two groups

- angles at vertices $B_{i}, i=2, \ldots, k-1$ we denote as $\beta$,
- angles at vertices $A_{j}, j=1,2, \ldots, n$ we denote as $\alpha$.

15. $K_{N}$ stands for the sum of the interior angles of the semi-regular polygon $P_{N}^{a, \delta}$.
16. $S_{A_{j}}^{\gamma}$ stands for the sum of diagonals comprised by angle $\gamma$ and drawn from the vertex $A_{j}$, and with $\varepsilon_{A_{j}}^{\gamma}$ we denote the angle between the diagonals drawn from vertex $A_{j}$ comprised by angle $\gamma$.
17. We denote the radius of the inscribed circle of the semi-regular polygon $P_{N}^{a, \delta}$, with $r_{N}$.

## 2. MAIN RESULT

Let on each side of the regular polygon $P_{n}^{b}$, be constructed polygon $P_{k}^{a}$, with $(k-1)$ equal sides, and let $d_{l}=A_{j} B_{i}, l=1,2, \ldots, k-2, d_{k-2}=$ $A_{j} A_{j+1}=b, j=1,2, \ldots, n ; i=3,4, \ldots, k ; B_{k}=A_{j+1}$ diagonals drawn from the vertex $A_{j}, A_{j} A_{j+1}=b$ to the vertices $B_{i}$ of the polygon $P_{k}^{a}$. The following lemma is valid for interior angles at vertices $B_{i}, B_{k}=A_{j+1}$ of triangle $\triangle A_{j} B_{i-1} B_{i}$ determined by diagonals $d_{i}$. For more about in [7].

Lemma 2.1. Ratio of values of interior angles $\triangle A_{j} B_{i-1} B_{i} ; i=3,4, \ldots, k$ at vertex $B_{i}$ of the base $A_{j} B_{i}=d_{i-2}$ from the given angle $A_{j} B_{i}=d_{i-2} \delta$ is defined by relation $\angle B_{i}=(i-2) \delta$.

Proof. The proof is done by induction on $i$, $(i \geq 3), i \in \mathbb{N}$. Let us check this assertion for $i=4$ because for $i=3$ the claim is obvious because the triangle erected on the sides of the regular polygon is isosceles and angles at the base $b$ are equal as angle $\delta$. If $i=4$ and isosceles rectangle is constructed on side $b$ of the regular polygon $P_{n}^{b}$ (Figure 2) with vertices $A_{1} B_{2} B_{3} B_{4}$, and $B_{4}=A_{2}$ where $A_{1} A_{2}=b$ side of the regular polygon.

Diagonals constructed from the vertex $A_{1}$ divide polygon $A_{1} B_{2} B_{3} B_{4}$, into triangles $\triangle A_{1} B_{2} B_{3}$ and $\triangle A_{1} B_{3} B_{4}$. According to the definition of the angle $\delta$ we have:

$$
\angle B_{2} A_{1} B_{3}=\angle B_{2} B_{3} A_{1}=\angle B_{3} A_{1} B_{4}=\delta
$$

Intersection of the centerline of the triangle's base $\triangle A_{1} B_{2} B_{3}$ i $A_{1} B_{4}=b$ is point $S_{1}$. Since $A_{1} B_{2}=B_{2} B_{3}=a$, a and construction of the point $S_{1}$ leads to conclusion that $\square A_{1} S_{1} B_{2} B_{3}$ is a rhombus with side $a$.


FIGURE 2. Rectangle $A_{1} B_{2} B_{3} B_{4}$
Since $B_{3} S_{1}=B_{3} B_{4}=a$ a triangle $\triangle B_{3} S_{1} B_{4}$ is isosceles, and its interior angle at vertex $S_{1}$ is exterior angle of the triangle $\triangle A_{1} B_{3} S_{1}$, thus $\angle S_{1}=2 \delta$, as well as $\angle B_{4}=2 \delta$. Let us presume that the claim is valid for an arbitrary integer $(p-1),(p \geq 4), p \in \mathbb{N}$, that is $i=(p-1)$ interior angle of the triangle $\triangle A_{j} B_{p-2} B_{p-1}$ at the vertex $B_{p-1}$ has value $\angle B_{p-1}=(p-3) \delta$.

Let us show now that this ascertain is true for integer $p$, that is for $i=p$. Also, interior angle of the triangle $\triangle A_{j} B_{p-1} B_{p}$ at vertex $B_{p}$ has value $\angle B_{p}=(p-2) \delta$. Let us note $\square A_{j} B_{p-2} B_{p-1} B_{p}$ which is split into triangles $\triangle A_{j} B_{p-2} B_{p-1}$ and $\triangle A_{j} B_{p-1} B_{p}$ by diagonal $d_{p-3}$, and that $\angle B_{u, p-1}=(p-$ 3) $\delta$ according to presumption (Figure 3).


FIGURE 3. Rectangle $A_{j} B_{p-2} B_{p-1} B_{p}$
Since interior angles of triangles are congruent at vertex $A_{j}$, by definition of angle $\delta$, and $B_{p-2} B_{p-1}=B_{p-1} B_{p}=a$, it is easily proven that there is point $S$ such that triangle $\triangle S B_{p-1} B_{p}$ is isosceles triangle (Figure 3.), and rectangle $\square A_{j} B_{p-2} B_{p-1} S$ is rectangle with perpendicular diagonals.

Congruence of triangles $\triangle A_{j} B_{p-2} B_{p-1} \simeq \triangle A_{j} B_{p-1} S$ leads us to conclusion that

$$
\angle A_{j} B_{p-1} S=(p-3) \delta
$$

Angle at vertex $S$ is the exterior angle of triangle $\triangle A_{j} B_{p-2} B_{p-1}$. And thus we have

$$
\angle S=\delta+(p-3) \delta=(p-2) \delta
$$

Since triangle $S B_{p-1} B_{p}$ is isosceles, $\angle B_{p}=(p-2) \delta$ which we were supposed to prove. So, for each $i \in \mathbb{N}, i \geq 3$ interior angle of triangle $\triangle A_{j} B_{i-1} B_{i}$ at vertex $B_{i}$ is $\angle B_{i}=(i-2) \delta$.


FIGURE 4. Isosceles polygon $P_{k}^{a}$ constructed on side $b$ of the regular polygon $P_{n}^{b}$

Lemma 2.2. Semi regular equilateral polygon $P_{(k-1) n}^{a, \delta}$ with given side a and angle $\delta$ defined with (5), has $n$ interior angles equal to an that angle

$$
\begin{equation*}
\alpha=\frac{(n-2) \pi}{n}+2(k-2) \delta \tag{6}
\end{equation*}
$$

and $(k-2) n$ interior angles equal to an that angle

$$
\begin{equation*}
\beta=\pi-2 \delta, \delta>0, k \geq 3, n \geq 3, k, n \in \mathbb{N} \tag{7}
\end{equation*}
$$

Proof. Using figure 4 and results of lemma 2.1 it is easily proven that polygon $P_{k}^{a}$ constructed on side $b$ of the regular polygon $P_{n}^{b}$ has $(k-2)$ interior angles with value $\pi-2 \delta$, and which are at the same time interior angles of the semi-regular polygon $P_{N}^{a}, N=(k-1) n$. So indeed, for $k=3$ the constructed polygon $P_{k}$ is isosceles triangle with interior angle at vertex $B_{2}=\pi-2 \delta$, and for $k=4$ constructed polygon is isosceles rectangle (Figure 2). That rectangle is drawn by diagonal $d_{1}$ from vertex $A_{j}, j=1,2, \ldots, n$, $B_{1} \equiv A_{1}, B_{4} \equiv A_{j+1}$ and $A_{j} A_{j+1}=b$ split into triangles $A_{j} B_{2} B_{3}$ and $A_{j} B_{3} A_{j+1}$ with interior angles at vertices $\angle B_{2}=\angle B_{3}=\pi-2 \delta$. Similarly it is proven that for every rectangle $A_{j} B_{i-2} B_{i-1} B_{i}, i=4,5, \ldots, k ;\left(B_{1}=A_{j}\right.$, $B_{k}=A_{j+1}, A_{j} A_{j+1}=b$ ) and the value of its vertex $B_{i-1}$,

$$
\angle B_{i-1}=(i-3) \delta+\pi-[(i-2) \delta+\delta]=\pi-2 \delta
$$

So, in every isosceles polygon $P_{k}^{a}$ there $k-2$ interior angles with measure $\pi-2 \delta$ (Figure 4.).

Since isosceles polygon $P_{k}^{a}$, is constructed on each side of regular polygon $P_{n}^{b}$, it follows that equilateral semi-regular polygon $P_{N}^{a}$ has total of $(k-2) n$ angles, which we were supposed to prove.

When interior angle of the semi-regular equilateral polygon at vertex $A_{j}$, $j=1,2, \ldots, n$ is equal to sum of interior angle of the regular polygon $P_{n}^{b}$ and double value of the interior angle of the polygon $P_{k}^{a}$ at vertex $B_{k}$, (Lemma 2.1) is valid

$$
\angle A_{u, j}=\alpha=\frac{(n-2) \pi}{n}+2(k-2) \delta
$$

which we were supposed to prove.
Condition of convexity of the semi-regular equilateral polygon $P_{N}^{a, \delta}$ and the values of its angle $\delta$ is given in the theorem.

Theorem 2.1. Equilateral semi-regular polygon $P_{N}^{a, \delta}, N=(k-1) n$ is convex if the following is true for the angle $\delta$

$$
\begin{equation*}
\delta \in\left(0 ; \frac{\pi}{(k-2) n}\right) \quad k, n \in \mathbb{N}, n, k \geq 3 \tag{8}
\end{equation*}
$$

Proof. Let us write values of the interior angles of the semi-regular polygon $P_{N}^{a, \delta}$ defined by relations(6),(7) in the form of linear functions

$$
\begin{equation*}
f(\delta)=\frac{(n-2) \pi}{n}+2(k-2) \delta, g(\delta)=\pi-2 \delta, \dot{k}, n \in \mathbb{N}, \dot{k}, n \geq 3 \tag{9}
\end{equation*}
$$

Since the polygon is convex if all its interior angles are smaller than $\pi$, to prove the theorem it is enough to show that for $\forall \delta \in\left(0 ; \frac{\pi}{(k-2) n}\right)$ all interior angles of the semi-regular polygon $P_{N}^{a, \delta}$ are smaller than $\pi$.

Indeed, from this relation $\beta=g(\delta)=\pi-2 \delta$ follows that $\beta=0$ for $\delta=\frac{\pi}{2}$, (Figure 5). On the basis of this and demands $\beta>0$ and $\delta>0$, we find that $\beta \in(0, \pi)$ and $0<\delta<\frac{\pi}{2}$, and thus we have

$$
\delta \in\left(0 ; \frac{\pi}{(k-2) n}\right), k \geq 3
$$

It is similar for interior angles equal to angle $\alpha$, (Figure 5 ). If we multiply the inequality $0<\delta<\frac{\pi}{(k-2) n}$ with $2(k-2)$, and $\frac{(n-2) \pi}{n}$ then add to the left and right side, we get the inequality

$$
\begin{aligned}
& \frac{(n-2) \pi}{n}<\frac{(n-2) \pi}{n}+2(k-2) \delta<\frac{2 \pi}{n}+\frac{(n-2) \pi}{n} \Leftrightarrow \\
& \frac{(n-2) \pi}{n}<\alpha<\pi, \Rightarrow \alpha \in\left(\frac{(n-2) \pi}{n}, \pi\right)
\end{aligned}
$$

for $\delta \in\left(0 ; \frac{\pi}{(k-2) n}\right), k \geq 3$.


FIGURE 5. Semi-regular polygon and convexity
So, for every $\delta \in\left(0, \frac{\pi}{(k-2) n}\right)$ interior angles of the semi-regular polygon $P_{N}^{a, \delta}$ are smaller than $\pi$. That is, semi-regular equilateral polygon $P_{N}^{a, \delta}$ is convex for $\delta \in\left(0 ; \frac{\pi}{(k-2) n}\right)$.

Values of the interior angles of the convex semi-regular equilateral polygon $P_{N}^{a, \delta}$ depend on the interior angle of the corresponding regular polygon $\gamma=$ $\frac{(n-2) \pi}{n}$ as well as the angle $\delta$. Which means that the following theorem is true:

Corrolary 2.1. Convex semi-regular equilateral polygon $P_{N}^{a, \delta}$ is regular for $\delta=\frac{\pi}{(k-1) n} ; k, n \in \mathbb{N}, n, k \geq 3, \delta>0$ and the values of its interior angles are given in the relation

$$
\begin{equation*}
\alpha=\beta=\frac{(n k-n-2) \pi}{n(k-1)} . \tag{10}
\end{equation*}
$$

Proof. According to the definition of the regular polygon, its every angle has to be equal, thus from $\alpha=\beta$ and the relation (6),(7) we have the equation

$$
\frac{(n-2) \pi}{n}+2(k-2) \delta=\pi-2 \delta
$$

out of which we find out that the sought value of the angle is $\delta=\frac{\pi}{(k-1) n}$ for which the semi-regular equilateral polygon $P_{N}^{a, \delta}$ is regular. On this basis we find that the value of the interior angles is

$$
\alpha=\beta=\frac{(n k-n-2) \pi}{n(k-1)} .
$$

The text further continues with the presentation of some of the results regarding the inscribed circle of the semi-regular polygon and the geometrical construction of a convex semi-regular polygon with a given radius of the inscribed circle.

Theorem 2.2. Out of all convex equilateral semi-regular polygons with $P_{N}^{a, \delta}$, $N=(k-1) n$ sides constructed above the regular polygon $P_{n}^{b}$ with $n$ sides, a circle may be inscribed only if $k=3, \forall n \geq 3, n \in \mathbb{N}$.

Proof. The proof is given through two stages. Firstly, let us prove that a circle may be inscribed for $P_{(k-1) n}^{a, \delta}$ for $k=3$ while it may not be possible for $P_{(k-1) n}^{a, \delta}$ with $k>3, n \geq 3, n \in \mathbb{N}$, to have an inscribed circle.

1. Let us presume that a semi-regular polygon $P_{(k-1) n}^{a, \delta}$ if $k=3, n \geq 3, n \in$ $\mathbb{N}$ has an inscribed circle $\mathcal{C}(O, r)$ (Figure.6). Let us prove that each side of the semi-regular polygon $P_{2 n}^{a, \delta}$, optional sides $a$ and angle $\delta=\angle(a, b)$ to which it is convex, and $b$ side of the regular polygon above which it is constructed are all tangent to such a circle. Let $A_{1} B_{1} A_{2} B_{2} \ldots A_{n} B_{n}$ be vertices, and $\angle A_{i}=\alpha=\frac{(n-2) \pi}{n}+2 \delta, i=1,2, \ldots, n$ interior angles to vertices $A_{i}$, and $\angle B_{i}=\beta=\pi-2 \delta, i=1,2, \ldots, n$ interior angles to vertices $B_{i}$ of semi-regular polygon $P_{2 n}^{a, \delta}$. Let us mark the center of inscribed circle $\mathcal{C}(O, r)$ with the mark $O$. If each vertex of the semi-regular polygon $P_{2 n}^{a, \delta}$ is joined with the center of the inscribed circle $O$ there can be observed the following triangles:

$$
\triangle A_{1} O B_{1}, \triangle B_{1} O A_{2}, \ldots, \triangle A_{n} O B_{n}, \triangle B_{n} O A_{1}
$$

for which the following is applicable:
a) $A_{1} B_{1}=A_{2} B_{2}=\cdots=A_{n} B_{n}=B_{n} A_{1}=a$ side of the semi-regular polygon,
b) $\angle O A_{1} B_{1}=\angle O A_{2} B_{2}=\cdots=\angle O A_{n} B_{n}=\frac{\alpha}{2}$
c) $\angle O B_{1} A_{2}=\angle O B_{2} A_{3}=\cdots=\angle O B_{n} A_{1}=\frac{\beta}{2}$.

Thus, we may conclude that they are mutually congruent. Let us observe one of those triangles, e.g. $\triangle A_{1} O B_{1}$. Let us mark its height from the point $O$ to side $a=A_{1} B_{1}$ with $h_{1}$ while observing the said height to be equal to the radius of the inscribed circle $h_{1}=r$.


FIGURE 6. The Radius of the Inscribed Circle - Apothem

The congruency of the said triangles implies the congruency in their surfaces. If we take that $P_{i}=\frac{a h_{i}}{2}$ is surface of triangles $\triangle A_{i} O B_{i}, i=1,2, \ldots, n$ that is, of triangle $\triangle B_{i} O A_{i+1}, i=1,2, \ldots, n \mathrm{i} n+1 \equiv 1 \bmod n$ with $h_{i}$ being the height from vertex $O$ to side $a$, then, from the equality in their surfaces, and after shortening the equation it follows that

$$
\begin{equation*}
h_{1}=h_{2}=\cdots=h_{n}=r \tag{11}
\end{equation*}
$$

From this equation we may conclude that circle $\mathcal{C}(O, r)$ is tangent to each side of the semi-regular polygon $P_{2 n}^{a, \delta}$ i.e. it is inscribed to that semi-regular polygon (Figure 6).
2. Given that for $k>3, k \in \mathbb{N}, n \geq 3, n \in \mathbb{N}$ for semi-regular polygon $P_{(k-1) n}^{a, \delta}$ constructed above regular polygon $P_{n}^{b}$ with $n$ sides, there is circle $\mathcal{C}(O, r)$ inscribed with its center at point $O$ and with radius $r$. By the definition of the construction of a semi-regular polygon there is an isosceles polygon $P_{k}^{a}$ of side $a$ constructed above each side $b$ of regular polygon $P_{n}^{b}$. If the vertices of the semi-regular polygon side $a$ become joined with point $O$ the polygon shall become divided into two classes of mutually congruent triangles in reference to the interior angles along the base side equal to side $a$.

To one class of triangles belong the following:

$$
\triangle O A_{i} B_{1}^{j}, \triangle O B_{k-1}^{j} A_{i+1} ; i, j=1,2, \ldots, n ; n+1 \equiv 1 \quad \bmod n
$$

which have their interior angle along vertex $\angle A_{i}=\frac{\alpha}{2}$, and interior angle with vertex $\angle B_{j}=\frac{\beta}{2}$, and base $A_{i} B_{j}$ equal to side $a$ of the semi-regular polygon (Figure 6).

To the other class of triangles belong the isosceles triangles $\triangle O B_{p}^{j} B_{p+1}^{j}$, $p=1,2, \ldots, k-3$, which have their angles along $B_{p} B_{p+1}=a$ equal to $\frac{\beta}{2}$.

From the congruence of the first class triangles follows the equality in their heights $h_{m}^{a}, m=1,2, \ldots, 2 n$ to base $a$, i.e. the following is applicable:

$$
h_{1}^{a}=h_{2}^{a}=\cdots=h_{2 n}^{a}=r_{1}
$$

with $r_{1}$ being the inscribed circle radius.
Similarly, from the congruence of the second class triangles follows the equality in their heights $H_{t}^{a}, t=1,2, \ldots, n(k-3)$ to base $a$, i.e. the following is applicable:

$$
\begin{equation*}
H_{1}^{a}=H_{2}^{a}=\cdots=H_{n(k-3)}^{a}=r_{2} \tag{12}
\end{equation*}
$$

with $r_{2}$ being the inscribed circle radius. Since pursuant to presumption $r_{1}=$ $r_{2}=r$ w̌hat would only be possible if the first class triangles were congruent to the second class triangles, and in that case this would be applicable: $\frac{\alpha}{2}=\frac{\beta}{2} \Rightarrow \alpha=\beta$, i.e. meaning that polygon $P_{(k-1) n}^{a, \delta}$ is regular, what in turn is opposite to the presumption that it is semi-regular. Therefore, circle $\mathcal{C}(O, r)$ is not an inscribed one to the semi-regular polygon since it is not tangent to each side of the polygon, i.e. it is tangent either to base $a$ of the first class triangle or base $a$ of the second class triangle.

Based on the presented proof it follows that there may not be inscribed a circle to a semi-regular equilateral polygon $P_{(k-1) n}^{a, \delta}$ with $k>3, n \geq 3, n \in \mathbb{N}$.

Theorem 2.3. Radius of the inscribed circle of the equilateral semi-regular polygon $P_{(k-1) n}^{a, \delta} k, n \geq 3, n \in \mathbb{N}$, which does not have three consecutive vertices each with its corresponding interior angle equal to angle $\pi-2 \delta$ is determined through a relation

$$
\begin{equation*}
r_{(k-1) n}=a \frac{\cos \delta \cos \left(\frac{\pi}{n}-(k-2) \delta\right)}{\sin \left(\frac{\pi}{n}-(k-3) \delta\right)} \tag{13}
\end{equation*}
$$

Proof. Let there be vertex $A_{1}$ between the verticals constructed from center $O$ of the inscribed circle to two neighbouring sides of the semi-regular polygon $P_{(k-1) n}^{a, \delta}$, and let there be an interior angle $\alpha$ as defined in a relation (6) corresponding to this vertex $A_{1}$, and let there be neighbouring vertices $B_{1}$ and $B_{2}$ with their corresponding interior angles $\beta=\pi-2 \delta$.
Now, let us observe the equiangular triangles $\triangle O B_{1} M, \triangle O A_{1} M$ with $O M=r$ (Figure 7).


FIGURE 7. Radius of the Inscribed Circle
It is obvious from the equiangular triangle $\triangle O A_{1} M$ that $t g \frac{\alpha}{2}=\frac{r}{a-y}$, giving $r=(a-y) t g \frac{\alpha}{2}$.

Similarly, from equiangular triangle $\triangle O B_{1} M \operatorname{tg} \frac{\beta}{2}=\frac{r}{y}$, giving $y=\frac{r}{\operatorname{tg} \frac{\beta}{2}}$. If we replace this and insert it into the first equation we get the following:

$$
\frac{r}{\operatorname{tg} \frac{\alpha}{2}}+\frac{r}{\operatorname{tg} \frac{\beta}{2}}=a
$$

and out of which we find the following:

$$
r\left(\frac{1}{\operatorname{tg} \frac{\alpha}{2}}+\frac{1}{\operatorname{tg} \frac{\beta}{2}}\right)=a \Leftrightarrow r=\frac{a}{\cot \frac{\alpha}{2}+\cot \frac{\beta}{2}}
$$

Since $\cot \frac{\alpha}{2}=\operatorname{tg}\left(\frac{\pi}{n}-(k-2) \delta\right)$ and $\cot \frac{\beta}{2}=\operatorname{tg} \delta$ from the previous equation, after the processing and shortening of the equation we get sought equation:

$$
r_{(k-1) n}=\frac{a \cos \delta \cos \left(\frac{\pi}{n}-(k-2) \delta\right)}{\sin \left(\frac{\pi}{n}-(k-3) \delta\right)}
$$

Š which needed to be proven in the first place.
Corrolary 2.2. The radius of the inscribed circle of the semi-regular polygon $P_{2 n}^{a, \delta}$ is given in relation.

$$
\begin{equation*}
r_{2 n}=a \frac{\cos \delta \cos \left(\frac{\pi}{n}-\delta\right)}{\sin \frac{\pi}{n}} \tag{14}
\end{equation*}
$$

Proof. From the relation (13) for $k=3$ we get the sought relation.
Theorem 2.4. There is no convex equilateral semi-regular polygon $P_{N}^{a, \delta}$ with three consecutive vertices each with their corresponding interior angles equal to angle $\beta=\pi-2 \delta$, which may have a circle inscribed.

Proof. Let us presume quite the opposite to this, i.e., that there is a semiregular polygon $P_{n(k-1)}^{a, \delta}$ with the inscribed circle $\mathcal{C}(O, r)$ and that there is a vertex $B_{j+1}$ with its corresponding interior angle $\beta=\pi-2 \delta$, between the verticals constructed from the center $O$ of the inscribed circle onto the two neighboring sides. Let its neighboring vertices $B_{j}$ and $B_{j+2}$ correspond the interior angles $\beta$ (Figure 7.). Then, from the equiangular triangles $\triangle O B_{j} K$, $\triangle O K B_{j+1}$ we find that the other relation for the radius of the inscribed circle would be as follows:

$$
\begin{equation*}
r_{(k-1) n}=\frac{a}{2} \cot \delta \tag{15}
\end{equation*}
$$

Since the equations (13) and (15) represent the radius of inscribed circle $\mathcal{C}(O, r)$, with their processing, equaling and shortening with $a$, we get the following equation:

$$
\frac{\cos \delta \cos \left(\frac{\pi}{n}-(k-2) \delta\right)}{\sin \left(\frac{\pi}{n}-(k-3) \delta\right)}=\frac{1}{2} \cot \delta
$$

With a presumption that $\sin \delta \neq 0 \Rightarrow \delta \neq m \pi, m \in \mathbb{Z}$ and

$$
\begin{aligned}
\sin \left(\frac{\pi}{n}-(k-3) \delta\right) & \neq 0 \Leftrightarrow \frac{\pi}{n}-(k-3) \delta \neq l \pi, l \in \mathbb{Z} \Rightarrow \\
\delta & \neq \frac{(1-n \cdot l) \pi}{n(k-3)}, k>3, n, k \in \mathbb{N}
\end{aligned}
$$

as well as with the condition of convexity of the semi-regular polygon (Theorem 2.1), this equation is then transformed into the form

$$
\begin{aligned}
2 \sin \delta \cos \delta \cos \left(\frac{\pi}{n}-(k-2) \delta\right) & =\sin \left(\frac{\pi}{n}-(k-3) \delta\right) \cos \delta \Leftrightarrow \\
\cos \delta & =0 \vee 2 \sin \delta \cos \left(\frac{\pi}{n}-(k-2) \delta\right)=0 .
\end{aligned}
$$

From the equation $\cos \delta=0$ we find that the $\delta=\frac{(2 l+1) \pi}{2}, \quad l \in \mathbb{Z}$ is the solution. This solution does not meet the condition of convexity of the semi-regular polygon, not even for one whole number $l \in \mathbb{Z}$.

From the second equation, being that

$$
2 \sin \delta \cos \left(\frac{\pi}{n}-(k-2) \delta\right)=\sin \left(\frac{\pi}{n}-(k-1) \delta\right)+\sin \left(\frac{\pi}{n}-(k-3) \delta\right)
$$

we have the following

$$
\sin \left(\frac{\pi}{n}-(k-1) \delta\right)=0
$$

Here we find that $\delta \neq \frac{(1-n l) \pi}{n(k-1)}, \quad l \in \mathbb{Z}, \quad, k \geq 3, \quad n, k \in \mathbb{N}$. The only value of the angle $\delta$ which meets the condition of convexity is the one with $l=0$, and then $\delta=\frac{\pi}{n(k-1)}$. Since with such value of the angle $\delta$ polygon $P_{(k-1) n}^{a, \delta}$ is regular, it follows that there is no semi-regular polygon which has three consecutive vertices with their corresponding interior angles equal to the angle $\pi-2 \delta$ such that it can be inscribed a circle.


FIGURE 8. A circle may be inscribed to the equilateral semi-regular dodecagon if $k=3, n=6$.

Example 1. Examples of semi-regular polygon with inscribed circles;
a) For $k=3, n=6$ equilateral semi-regular dodecagon which may be inscribed a circle. (Figure 8).
b) For $k=5, n=3$ (Figure 9) and for $k=4, n=4$ (Figure 10), equilateral semi-regular dodecagon which may not be inscribed a circle. As an example, the angle value of $\delta=10^{\circ}$ has been chosen.


FIGURE 9. A circle may not be inscribed to the equilateral dodecagon with $k=5, n=3$


FIGURE 10. A circle may not be inscribed to the equilateral dodecagon with $k=4, n=4$.

Theorem 2.5. The ratio of surface $P_{2 n}$ of the semi-regular polygon $P_{2 n}^{a, \delta}$ and the product of multiplication of its side a and the radius of inscribed circle $r$ is equal to the number of sides $n$ of the regular polygon above which it has been constructed, i.e.

$$
\begin{equation*}
\frac{P_{2 n}}{a r}=n \tag{16}
\end{equation*}
$$

Proof. From the equation for surface of the semi-regular polygon $P_{2 n}^{a}$

$$
P_{2 n}=\frac{n a^{2} \cos \delta \cos \left(\frac{\pi}{n}-\delta\right)}{\sin \frac{\pi}{n}}
$$

and the formula for the radius of the inscribed circle

$$
r=r_{2 n}=\frac{a \cos \delta \cos \left(\frac{\pi}{n}-\delta\right)}{\sin \frac{\pi}{n}}
$$

we have the following:

$$
P_{2 n}=n a\left(\frac{a \cos \delta \cos \left(\frac{\pi}{n}-\delta\right)}{\sin \frac{\pi}{n}}\right)=a n r \Rightarrow \frac{P_{2 n}}{a r}=n
$$

with $n$ being the number of sides to the regular polygon above which a semi-regular polygon $P_{2 n}^{a}$ has been constructed.

Proposition 2.1. If the inscribed circle of semi-regular polygon $P_{2 n}^{a} P$ is a unit circle, then the ratio of the numerical value of the polygon surface and polygon side is equal to the number of sides $n$ of the corresponding regular polygon above which it has been constructed.
Proof. It follows from (16), if $\mathrm{r}=1$, i.e. $\frac{P_{2 n}}{a}=n$. The following theorem deals with the equilateral semi-regular polygons with the inscribed unit circle.
Theorem 2.6. There is no semi-regular equilateral polygon $P_{2 n}^{a, \delta}$ with the inscribed unit circle and the side a and the whole number length, i.e. such that $a \in \mathbb{Z}$

Proof. We have shown (Corollary 2.2) that the radius of the inscribed circle is given through a relation

$$
r_{2 n}=a \frac{\cos \delta \cos \left(\frac{\pi}{n}-\delta\right)}{\sin \frac{\pi}{n}}
$$

out of which, for $r=1$, after the relation processing and shortening, we find that the length of a side of a semi-regular polygon $P_{2 n}^{a, \delta}$ is determined with

$$
\begin{equation*}
a=\frac{\sin \frac{\pi}{n}}{\cos \delta \cos \left(\frac{\pi}{n}-\delta\right)} \tag{17}
\end{equation*}
$$

If we use that what has been shown for the convex semi-regular equilateral polygons which may be inscribed a circle, that it is applicable that $k=$ $3, n \geq 3, n \in \mathbb{N}$ and $\delta \in\left(0, \frac{\pi}{n}\right)$ and that $\sin \alpha \in \mathbb{Q} \Leftrightarrow \alpha=\frac{m \pi}{2}, m \in \mathbb{Z}$ or $\alpha=$ $\frac{\pi}{6}(6 l \pm 1), l \in \mathbb{Z}$, as well as that for such values of angle $\alpha, \sin \alpha \in\left(0, \pm 1, \pm \frac{1}{2}\right)$ we have the following:

$$
\sin \pi n \Leftrightarrow \frac{\pi}{n}=\frac{m \pi}{2}, m \in \mathbb{Z} \vee \frac{\pi}{n}=\frac{\pi}{6}(6 l \pm 1), l \in \mathbb{Z}
$$

From the first equation we get that $n=\frac{2}{m}$, wherefrom $n \in \mathbb{N}$, only for $m=1$ and $m=2$. These values do not meet the condition that $n \geq 3$.

From the second equation $\frac{\pi}{n}=\frac{\pi}{6}(6 l \pm 1)$ we find that $n=\frac{6}{6 l \pm 1}$ and that it represents a natural number $n=6$ only for $l=0$. For that value there is a $\sin \frac{\pi}{6}=\frac{1}{2}$. Should we replace that value in (17) we obtain the following:

$$
a=\frac{1}{2 \cos \delta \cos \left(\frac{\pi}{6}-\delta\right)}
$$

Since $2 \cos \delta \cos \left(\frac{\pi}{6}-\delta\right)=\cos \left(2 \delta-\frac{\pi}{6}\right)+\cos \left(\frac{\pi}{6}\right)$ the following sequence of inequation is applicable:

$$
\begin{aligned}
\sqrt{3} & <\cos \left(2 \delta-\frac{\pi}{6}\right)+\frac{\sqrt{3}}{2}<\frac{2+\sqrt{3}}{2} \Rightarrow \\
\frac{2}{2+\sqrt{3}} & <\frac{1}{\frac{\sqrt{3}}{2}+\cos \left(2 \delta-\frac{\pi}{6}\right)}<\frac{\sqrt{3}}{3} \Leftrightarrow \\
\frac{2}{2+\sqrt{3}} & <a<\frac{\sqrt{3}}{3} \Rightarrow \\
4-2 \sqrt{3} & <a<\frac{\sqrt{3}}{3}
\end{aligned}
$$

the length of side $a$ is not a whole number, what is exactly that what needed to be proven.

A geometrical construction of the semi-regular polygon which may be inscribed a circle is given within the following theorem.

Theorem 2.7. For a given radius $r$ of the inscribed circle and angle $\delta$ as defined in (5) there is an equilateral semi-regular polygon $P_{N}^{r, \delta}$, with $N=$ $(k-1) n$ sides for $k=3, n \geq 3, n \in \mathbb{N}$ which which is defined with those elements and which may be geometrically constructed.

Proof. Let us presume that the construction of a such semi-regular polygon $P_{2 n}^{r, \delta}$ is possible, and that it is presented in Figure 11. Let $\mathcal{C}(O, r)$ be the inscribed circle with its center at point $O$ and with radius $\overline{O K}=r$. We have already shown (Theorem 2.2) that out of all semi-regular polygons $P_{(k-1) n}^{a, \delta}$ a circle may be inscribed only if $k=3$. Let $A_{1} B_{1} A_{2} B_{2} \ldots A_{n} B_{n}$ be the vertices of a semi-regular polygon constructed above the sides of a regular polygon with vertices $A_{1} A_{2} \ldots A_{n}$, and let neighboring vertices $A_{i}$ i $B_{i}, i=1,2, \ldots n$ have their corresponding interior angles immediately to the vertices in the following sequence: to vertices $A_{i}$ correspond angles $\alpha=\frac{(n-2) \pi}{n}+2 \delta$, and to vertices $B_{i}$ correspond angles $\beta=\pi-2 \delta$. Let us take randomly two consecutive vertices of the semi-regular polygon. For the right-angled triangles the following is applicable:

1. For $\triangle O K A_{1}$ it is: $\angle A_{1}=\frac{\alpha}{2}=\frac{(n-2) \pi}{2 n}+\delta, \angle O=\frac{\pi}{n}-\delta, \angle K=\frac{\pi}{2}, \overline{O K}=r$
2. For triangle $\triangle O K B_{1}$ it is: $\overline{O K}=r, \angle K=\frac{\pi}{2}, \angle B_{1}=\pi-2 \delta$ and $\angle O=\delta$ (Figure 11).

Based on the given elements $r$ and $\delta$ we can construct the right-angled triangle $\triangle O K B_{1}$. The intersection of straight line $p$ through points $B_{1}, K$ with the angle side $\angle O=\frac{\pi}{n}-\delta$ (which may be constructed depending on the
number of $n$ sides of the appropriate regular polygon) determines vertex $A_{1}$ of right-angled triangle $\triangle O K A_{1}$. It is with this that we have constructed the side $a=B_{1} A_{1}$ of the semi-regular polygon. If we intersect a tangent $t_{A_{1}}$ from vertex $A_{1}$ constructed onto circle $\mathcal{C}(O, r)$ with circle $\mathcal{C}\left(A_{1}, a\right)$ we get vertex $B_{2}$. If in that vertex we construct a tangent onto an inscribed circle $\mathcal{C}(O, r)$ the intersection of such tangent and circle $\mathcal{C}\left(B_{2}\right)$ determines vertex $\mathcal{C}\left(B_{2}\right)$. If we proceed further on in the same manner, we may get all the other vertices of the semi-regular equilateral polygon $P_{2 n}^{r, \delta}$.


FIGURE 11. Construction of equilateral dodecagon with a given radius of inscribed circle $r$ and angle $\delta$

Construction description: Let there be given radius $r$ and angle $\delta$.

1. We construct a right-angled triangle $\triangle O K B_{1}$ with the following given elements:

$$
\overline{O K}=r, \angle K=\frac{\pi}{2}, \angle O=\delta
$$

2. We construct a circle $\mathcal{C}(O, r), \overline{O K}=r$ as an inscribed circle of a semiregular polygon $P_{2 n}^{r, \delta}$.
3. We construct an angle in center $O, \angle O=\frac{\pi}{n}-\delta$, and then construct a right-angled triangle $\triangle O K A_{1}$, the construction of which determines side $a=B_{1} A_{1}$ of the semi-regular polygon.
4. We construct a tangent from vertex $A_{1}$ to circle $\mathcal{C}(O, r)$ and then we construct vertex $B_{2}$, in the following manner $\mathcal{C}\left(A_{1}, \overline{B_{1} A_{1}}=a\right) \cap \mathcal{C}(O, r)$.
5. If we repeat the previous procedure this time from vertex $B_{2}$ we then get vertex $A_{2}$. We then proceed with the same procedure to construct all other vertices. The example above (Figure 12) presents a construction of the semi-regular $P_{6}^{\delta, r}$ with a given radius $r=2 \mathrm{~cm}$ of inscribed circle and $\delta=15^{\circ}$.


FIGURE 12. Construction $P_{6}^{\delta, r}, r=2.5 \mathrm{~cm}, \delta=15^{\circ}$

## References

[1] Vavilov, V.V. and Ustinov, V.A.,Polupravylnye Mnogouglov na Reshetkah (Russian), Kvant, 6(2007).
[2] Vavilov, V.V. and Ustinov, V.A., Mnogougolnyky na Reshetkah (Russian), Moscow, 2006.
[3] Hilbert, D. and Cohn-Vossen, S. Anschauliche Geometrie (Russian),Verlig von J.Springer, Berlin, 1932.
[4] Aleksandrov, A.D., Konvexny Polyedry (Russian), Moscow, 1950.
[5] Radojčić, M., Elementarna geometrija-Osnove i elementi euklidske geometrije (Serbian), Belgrade, 1961.
[6] Ponarin, P.J., Elementarnaya Geometrya (Russian), Tom 1., MCNMO, Moscow, 2004.
[7] Stojanovic, N., Some metric properties of general semi-regular polygons, Global Journal of Advanced Research on Classical and Modern Geometries, 1(2)(2012), 39-56.

UNIVERSITY OF BANJA LUKA
FACULTY OF AGRICULTURE
78000 BANJA LUKA,
BREPUBLIC OF SRPSKA, BOSNIA AND HERZEGOVINA
e-mail: nsnest1@gmail.com

