A NEW PROPERTY OF
CIRCUMSCRIBED QUADRILATERAL

MIHAI MICULIŢA

Abstract. In this note we will give a new property of circumscribed quadrilateral.

1. Introduction

A circumscribed quadrilateral is a convex quadrilateral with an incircle, that is a circle tangent to all four sides. Figure 1 shows a circumscribed quadrilateral $ABCD$, where his incircle touch its sides AB, BC, CD, DA at the points X, Y, Z, T, respectively.

Figure 1

Other names for these quadrilaterals are tangent quadrilateral, inscriptible quadrilateral and circumscribable quadrilateral. For more details we refer to the monograph of D. Grinberg [3] or D. Mihalca, I. Chişescu and M. Chişnă [9] and to the papers of T. Andreescu and B. Enescu [1], W. Chao and P. Simeonov [2], M. Josefsson [4], [5], [6], M. Hajja [7], L. Hoehn [8], N. Minculete [10] and M. De Villiers [11].

Keywords and phrases: circumscribed quadrilateral, inversion

(2010)Mathematics Subject Classification: 51M04, 51M25
Received: 21.05.2012. In revised form: 4.06.2012. Accepted: 28.06.2012.
A convex quadrilateral with the sides a, b, c, d is tangential if and only if
\begin{equation}
 a + c = b + d
\end{equation}
according to the Pitot theorem [1, pp. 65-67].

The following result was obtained by A. Zaslavsky in [3].

In a circumscribed quadrilateral $ABCD$ we note with K, L, M and N the projections of the intersection point of the diagonals of $ABCD$ on the $[AB], [BC], [CD]$ and $[AD]$ sides. The following relation holds:
\begin{equation}
 \frac{1}{|OK|} + \frac{1}{|OM|} = \frac{1}{|OL|} + \frac{1}{|ON|}.
\end{equation}

2. Main result

Theorem 2.1. Let $ABCD$ be a circumscribed quadrilateral and O is the point of intersection of its diagonals. Let $A_1B_1C_1D_1$ be a quadrilateral obtained by inversion of pole O of quadrilateral $ABCD$. Then $A_1B_1C_1D_1$ is circumscribed quadrilateral.

Proof. Let K, L, M and N be the projections of the point O on the $[AB], [BC], [CD]$ and $[AD]$ sides, respectively (see Figure 2).

![Figure 2](image-url)

Denote by S_{OAB} the area of the triangle OAB and by k the ratio of the inversion of pole O. From the equalities
\begin{equation}
 2S_{OAB} = |OA| |OB| \left| \sin \overline{AOB} \right| = |AB| \cdot |OK|,
\end{equation}
A new property of circumscribed quadrilateral

we obtain

\[\frac{|AB|}{|OA| \cdot |OB|} = \frac{\sin \angle AOB}{|OK|} \]

Similarly, we have

\[\frac{|CD|}{|OC| \cdot |OD|} = \frac{\sin \angle COD}{|OM|} \]

Because \(\sin \angle AOB = \sin \angle COD \), by (5) and (6) results

\[|A_1B_1| + |C_1D_1| = k \cdot \left(\frac{|AB|}{|OA| \cdot |OB|} + \frac{|CD|}{|OC| \cdot |OD|} \right) \]

\[= k \cdot \sin \angle AOB \cdot \left(\frac{1}{|OK|} + \frac{1}{|OM|} \right) \]

Similarly, we have

\[|A_1D_1| + |B_1C_1| = k \cdot \sin \angle DOA \cdot \left(\frac{1}{|OL|} + \frac{1}{|ON|} \right) \]

Using the relation (2), we have

\[\frac{1}{|OK|} + \frac{1}{|OM|} = \frac{1}{|OL|} + \frac{1}{|ON|} \]

Because \(\sin \angle AOB = \sin \angle DOA \), by (6), (7) and (8), we obtain that:

\[|A_1B_1| + |C_1D_1| = |A_1D_1| + |B_1C_1| \]

Now, by (1) and (9) result the conclusion. \(\square \)

References

[13] Zaslavsky, A., Problem M.1887, Kvant, 6(2003), Nauka Publisher House, Russia.

ELEMEN TARY SCH OOL "OLTEA DOAMNA"
P ARCUL TR AI AN 4, OR ADEA, ROMANIA
E-mail address: miculitam@yahoo.com